MATHEMATICAL TRIPOS Part III

Friday, 5 June, 2015 $\,$ 9:00 am to 11:00 am $\,$

PAPER 31

PERCOLATION AND RELATED TOPICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Write an essay on self-avoiding walks (SAWs) on infinite graphs. Your essay should include:

- 1. a statement of any condition you are assuming on these graphs,
- 2. a definition of a SAW,
- 3. a definition of the connective constant μ ,
- 4. a proof of the existence of μ (any standard result from analysis should be stated clearly but the proof is not required),
- 5. an outline of the main steps of the proof that $\mu = \sqrt{2 + \sqrt{2}}$ for the hexagonal lattice.

$\mathbf{2}$

What is meant by *oriented percolation* on the square lattice \mathbb{Z}^2 ? Define the critical probability $\vec{p_c}$ of this process, and show that $0 < \vec{p_c} < 1$. [Results for undirected percolation may be used without proofs, but clear statements should be given.]

The vertex $(i, j) \in \mathbb{Z}^2$ is called *even* if i + j is even, and *odd* otherwise. Vertical edges of \mathbb{Z}^2 are oriented from the even endpoint to the odd endpoint, and horizontal edges from the odd endpoint to the even endpoint. Each edge is declared *open* with probability p, and *closed* otherwise, different edges receiving independent designations.

Let $\theta(p)$ be the probability that the origin is the endpoint of an infinite open path that is oriented away from the origin. Show that $\theta(p) > 0$ if 1 - p is sufficiently small and positive.

UNIVERSITY OF CAMBRIDGE

3

(a) Let μ_1 , μ_2 be probability measures on the product space $\{0,1\}^E$, where $|E| = N < \infty$. State Holley's theorem for the stochastic inequality $\mu_1 \leq \mu_2$.

State the FKG theorem for positive association, and prove it. [You may use Holley's theorem.]

(b) Let $p \in (0, 1)$, $q \in [1, \infty)$. Define the random-cluster measure ϕ_n with parameters p, q on the box $\Lambda_n = [-n, n]^2$ of the square lattice \mathbb{Z}^2 .

Let A be an increasing event that depends on the states of only finitely many edges. Use the FKG inequality to show that $\phi_{n+1}(A) \leq \phi_n(A)$, and deduce the existence of the limit $\phi(A) = \lim_{n \to \infty} \phi_n(A)$. [You may assume that ϕ_n satisfies the conditions of the FKG theorem.]

(c) (continuation) Deduce the existence of the limit $\phi(A)$ for any event A that depends on the states of only finitely many edges (but is not necessarily increasing).

$\mathbf{4}$

(a) Consider bond percolation with parameter p on the square lattice \mathbb{Z}^2 . Define the percolation probability $\theta(p)$, and show that $\theta(\frac{1}{2}) = 0$. [You may use other results from percolation theory so long as you give careful statements of them.]

(b) Let G = (V, E) be a finite, planar, connected graph, with dual graph G' = (V', E') obtained from G by placing a vertex in each face of G and joining two vertices whenever the corresponding faces share an edge. Let $\phi_{p,q}$ and $\phi'_{p,q}$ be the random-cluster measures on G and G'. Show that $\phi_{p,q}$ and $\phi'_{p',q}$ are dual to one another for some p' = p'(p,q) to be determined.

[You may assume Euler's formula: |V| - |E| + |F| = k for any planar graph G = (V, E), with set F of finite faces, and k connected components.]

(c) Let $0 , <math>q \ge 1$, and let ϕ_p^1 and ϕ_p^0 be the infinite-volume random-cluster measures on \mathbb{Z}^2 with parameters p, q and wired and free boundary conditions, respectively. Show that $\phi_{\pi}^0(0 \leftrightarrow \infty) = 0$ where $\pi = \sqrt{q}/(1 + \sqrt{q})$.

[You may assume that ϕ_{π}^0 , ϕ_{π}^1 form a dual pair of probability measures.]

END OF PAPER