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1

(i) State and prove Doob’s upcrossings lemma for a discrete-time martingale. State,
without giving a proof, the almost sure martingale convergence theorem.

(ii) What does it mean to say that a martingale is uniformly integrable?

(iii) Suppose X = (Xn : n > 0) is a uniformly integrable martingale. Show that, for
any stopping time T , the process XT = (Xn∧T : n > 0) is uniformly integrable.

2

(i) What does it mean to say that a process X = (Xt : t > 0) is a cadlag martingale?
What does it mean to say that a filtration (Ft)t>0 satisfies the usual hypotheses.

(ii) Let T be a bounded stopping time, and let X be a cadlag martingale. Show
that the stopped process XT is adapted.

(iii) Let S and T be bounded stopping times with S 6 T . Let A ∈ FS be given,
and set

U = S1(A) + T1(Ac).

Show that U is a stopping time.

(iv) Let X = (Xt : t > 0) be a cadlag integrable process, adapted to a filtration
(Ft)t>0 satisfying the usual hypotheses. Suppose XT is integrable with

E[XT ] = 0

for every bounded stopping time T . Prove that X is a martingale.
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Let B = (Bt : t > 0) be a standard Brownian motion on R.

A point x ∈ R is said to be a point of local maximum of a function f : R → R if
there exists a δ > 0 such that f(s) 6 f(t) for all s ∈ [t− δ, t+ δ] \{t}, and a point of strict

local maximum if f(s) < f(t) for all s ∈ [t− δ, t+ δ] \ {t}.

(i) Show that, almost surely, the set of times of local maxima of B is dense in [0,∞).

(Hint: Show first that there is no interval [a, b] on which Brownian motion is

monotone.)

(ii) Show that, almost surely, all local maxima for B are strict.

(Hint: Argue that it is enough to show that events of the form

E(t1, t2, t3, t4) =

{

max
t36t6t4

Bt − max
t16t6t2

Bt 6= 0

}

where 0 6 t1 < t2 < t3 < t4 < ∞ are rational, have probability 1.)

4

(i) Formulate Kakutani’s probabilistic solution to the Dirichlet problem

{

∆u(x) = 0, x ∈ D

u(ξ) = f(ξ), ξ ∈ ∂D
,

carefully stating what is required of the given function f and the domain D ⊂ R
d.

(ii) Give a proof that the probabilistic construction you have described in (i) provides
a solution to the Dirichlet problem. (You may use standard facts about harmonic functions
without proof.)
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(i) Let X = (Xn : n > 0) be a martingale in discrete time, satisfying

|Xn+1 −Xn| 6 M < ∞.

Consider the events
C =

{

lim
n

Xn exists and is finite
}

and

D =

{

lim sup
n

Xn = ∞ and lim inf
n

Xn = −∞

}

,

and show that P(C ∪ D) = 1.

( Hint: You may wish to consider stopping times of the form

TA = inf{n > 0: Xn < −A}.)

(ii) Show, by exhibiting a counterexample, that the conclusion above becomes false
if it is only assumed that

|Xn+1 −Xn| < ∞.

(Hint: You may find it helpful to consider a sequence (Yn) of independent random

variables having

P(Yn = 1) =
1

2n
and P(Yn = 0) = 1−

1

2n
.)
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(i) State the definition of a Lévy process. What form does the characteristic function
of a Lévy process take?

(ii) Check that the Poisson process, as defined in the lectures, satisfies the require-
ments of a Lévy process.

(iii) Let X = (Xt : t > 0) be a stochastic process. Suppose (Xn)∞n=1 is a sequence
of Lévy processes such that, for each t,

Xn
t → Xt in probability

and
lim
n

lim sup
t↓0

P(|Xn
t −Xt| > ǫ) = 0

for each ǫ > 0.

Prove that X is a Lévy process.
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