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1

Let S be a set of rational primes. Define what it means for the set S to have
Dirichlet density δ.

Let S be the set of primes p satisfying p ≡ 1 mod 4 and 2 ∈ (F×

p )
4. Calculate the

Dirichlet density of S.

2

Let K be a number field, and let b be a fractional ideal of OK , S∞ the set of infinite
places of K. Define the theta function Θ(y, b) for y ∈ (R>0)

S∞ , and state and prove its
functional equation.

[You may use the Poisson summation formula and any identity of Fourier trans-
forms provided that you state them precisely.]

Show that
lim
y→0

‖y‖1/2Θ(y, b) = 1,

where ‖y‖ =
∏

v∈S∞

y
[Kv:R]
v .

3

Let E/K be an extension of number fields. Define the different ideal dE/K , and
state a theorem relating its prime factorization to ramification in the extension E/K.

Let m > 2 be a square-free integer not divisible by 3 and satisfying m 6≡ ±1 mod 9.
Let K = Q(α), where α3 = m. Show that OK = Z[α].

4

Let K be a number field. What is a divisor of K? Define the multiplicity mv(c) and
the generalized ideal class group Hc associated to a place v and a divisor c of K. Write
down two short exact sequences relating Hc to the usual ideal class group Cl(OK) and the
group O×

K of units of K.

Now let K = Q(
√
15), let ∞1,∞2 be the infinite places of K, and let c be the divisor

OK · {∞1,∞2} of K. Show that #Hc = 4.

Decide whether Hc
∼= Z/4Z or Hc

∼= (Z/2Z)2.

[You may use the facts that Cl(OK) ∼= Z/2Z is generated by the ideal (2, 1 +
√
15)

and O×

K is generated by −1 and ǫ = 4 +
√
15.]
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