

### MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2015  $\,$  9:00 am to 12:00 pm  $\,$ 

## PAPER 28

# ALGEBRAIC NUMBER THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

Let S be a set of rational primes. Define what it means for the set S to have Dirichlet density  $\delta$ .

Let S be the set of primes p satisfying  $p \equiv 1 \mod 4$  and  $2 \in (\mathbb{F}_p^{\times})^4$ . Calculate the Dirichlet density of S.

### $\mathbf{2}$

Let K be a number field, and let  $\mathfrak{b}$  be a fractional ideal of  $\mathcal{O}_K$ ,  $S_\infty$  the set of infinite places of K. Define the theta function  $\Theta(y, \mathfrak{b})$  for  $y \in (\mathbb{R}_{>0})^{S_\infty}$ , and state and prove its functional equation.

[You may use the Poisson summation formula and any identity of Fourier transforms provided that you state them precisely.]

Show that

$$\lim_{y \to 0} \|y\|^{1/2} \Theta(y, \mathfrak{b}) = 1,$$

where  $\|y\| = \prod_{v \in S_{\infty}} y_v^{[K_v:\mathbb{R}]}$ .

### 3

Let E/K be an extension of number fields. Define the different ideal  $\mathfrak{d}_{E/K}$ , and state a theorem relating its prime factorization to ramification in the extension E/K.

Let  $m \ge 2$  be a square-free integer not divisible by 3 and satisfying  $m \not\equiv \pm 1 \mod 9$ . Let  $K = \mathbb{Q}(\alpha)$ , where  $\alpha^3 = m$ . Show that  $\mathcal{O}_K = \mathbb{Z}[\alpha]$ .

### $\mathbf{4}$

Let K be a number field. What is a divisor of K? Define the multiplicity  $m_v(\mathfrak{c})$  and the generalized ideal class group  $H_{\mathfrak{c}}$  associated to a place v and a divisor  $\mathfrak{c}$  of K. Write down two short exact sequences relating  $H_{\mathfrak{c}}$  to the usual ideal class group  $\operatorname{Cl}(\mathcal{O}_K)$  and the group  $\mathcal{O}_K^{\times}$  of units of K.

Now let  $K = \mathbb{Q}(\sqrt{15})$ , let  $\infty_1, \infty_2$  be the infinite places of K, and let  $\mathfrak{c}$  be the divisor  $\mathcal{O}_K \cdot \{\infty_1, \infty_2\}$  of K. Show that  $\#H_{\mathfrak{c}} = 4$ .

Decide whether  $H_{\mathfrak{c}} \cong \mathbb{Z}/4\mathbb{Z}$  or  $H_{\mathfrak{c}} \cong (\mathbb{Z}/2\mathbb{Z})^2$ .

[You may use the facts that  $Cl(\mathcal{O}_K) \cong \mathbb{Z}/2\mathbb{Z}$  is generated by the ideal  $(2, 1 + \sqrt{15})$ and  $\mathcal{O}_K^{\times}$  is generated by -1 and  $\epsilon = 4 + \sqrt{15}$ .]



3

# END OF PAPER

Part III, Paper 28