

## MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2015 9:00 am to 11:00 am

## PAPER 26

## LOCAL FIELDS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

(i) State and prove a version of Hensel's Lemma, and use it to compute the groups  $\mathbb{Z}_n^*/(\mathbb{Z}_n^*)^2$  for p a prime.

(ii) State the Hasse-Minkowski Theorem. Suppose that p, p + 12 and p + 24 are primes. Let

$$Q(x, y, z) = px^{2} - (p + 12)y^{2} + (p + 24)z^{2}.$$

Show that Q(x, y, z) = 0 has a solution in integers x, y, z (not all zero) if and only if  $p \equiv \pm 1 \pmod{8}$ .

[It may help to note that  $Q(x, 1, 2) = px^2 - (p + 8m)$  for some integer m.]

### $\mathbf{2}$

(i) Let K be a finite extension of  $\mathbb{Q}_p$ . Show that if  $|\cdot|_p$  on  $\mathbb{Q}_p$  extends to an absolute value  $|\cdot|$  on K then this extension is unique, and  $(K, |\cdot|)$  is complete. [You may assume  $\mathbb{Z}_p$  is compact.]

(ii) Let K be a number field with ring of integers  $\mathcal{O}_K$ . Let  $\mathfrak{p}$  be a prime ideal in  $\mathcal{O}_K$  with  $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ . Prove that the completion of K with respect to the  $\mathfrak{p}$ -adic absolute value is a finite extension of  $\mathbb{Q}_p$  and that every finite extension of  $\mathbb{Q}_p$  arises in this way.

#### 3

Let  $(K, |\cdot|)$  be a non-archimedean valued field. Define the valuation ring  $\mathcal{O}_K$ , maximal ideal  $\mathfrak{m}$ , and residue field k. Suppose that K is locally compact. Show that  $\mathfrak{m}$  is principal, say  $\mathfrak{m} = (\pi)$ , and k is finite, say |k| = q. Prove the following.

(i) If  $a \in \mathcal{O}_K^*$  then  $(a^{q^n})$  converges in K and its limit is a  $(q-1)^{\text{th}}$  root of unity which is congruent to  $a \mod \pi$ .

(ii) If charK = 0 and r is sufficiently large then  $(1 + \pi^r \mathcal{O}_K, \times) \cong (\mathcal{O}_K, +)$ .

Hence determine the number of roots of unity in  $\mathbb{Q}_p$ . In the case  $K = \mathbb{Q}_2(i)$ , where  $i = \sqrt{-1}$ , show that  $\mathcal{O}_K^* \cong \mu_4 \times \mathcal{O}_K$ . How may quadratic extensions of K are there (up to isomorphism)?

### $\mathbf{4}$

Write an essay on higher ramification groups, and illustrate by computing these groups for  $\mathbb{Q}_2(\zeta_8)/\mathbb{Q}_2$  and  $\mathbb{Q}_3(\zeta_3, \sqrt[3]{2})/\mathbb{Q}_3$ . [You should carefully state any results you need about Eisenstein polynomials.]



3

# END OF PAPER

Part III, Paper 26