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1

(i) State and prove a version of Hensel’s Lemma, and use it to compute the groups
Z∗

p/(Z
∗

p)
2 for p a prime.

(ii) State the Hasse-Minkowski Theorem. Suppose that p, p + 12 and p + 24 are
primes. Let

Q(x, y, z) = px2 − (p+ 12)y2 + (p+ 24)z2.

Show that Q(x, y, z) = 0 has a solution in integers x, y, z (not all zero) if and only if
p ≡ ±1 (mod 8).

[It may help to note that Q(x, 1, 2) = px2 − (p+ 8m) for some integer m.]

2

(i) Let K be a finite extension of Qp. Show that if | · |p on Qp extends to an absolute
value | · | on K then this extension is unique, and (K, | · |) is complete. [You may assume

Zp is compact.]

(ii) Let K be a number field with ring of integers OK . Let p be a prime ideal in
OK with p ∩ Z = pZ. Prove that the completion of K with respect to the p-adic absolute
value is a finite extension of Qp and that every finite extension of Qp arises in this way.

3

Let (K, | · |) be a non-archimedean valued field. Define the valuation ring OK ,
maximal ideal m, and residue field k. Suppose that K is locally compact. Show that m is
principal, say m = (π), and k is finite, say |k| = q. Prove the following.

(i) If a ∈ O∗

K then (aq
n

) converges in K and its limit is a (q − 1)th root of unity
which is congruent to a mod π.

(ii) If charK = 0 and r is sufficiently large then (1 + πrOK ,×) ∼= (OK ,+).

Hence determine the number of roots of unity in Qp. In the case K = Q2(i), where
i =

√
−1, show that O∗

K
∼= µ4 × OK . How may quadratic extensions of K are there (up

to isomorphism)?

4

Write an essay on higher ramification groups, and illustrate by computing these
groups for Q2(ζ8)/Q2 and Q3(ζ3,

3
√
2)/Q3. [You should carefully state any results you need

about Eisenstein polynomials.]
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