MATHEMATICAL TRIPOS Part III

Tuesday, 2 June, 2015 $-9{:}00~\mathrm{am}$ to 12:00 pm

PAPER 24

TOPICS IN SET THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- (a) Define carefully any two of the following three italicized concepts or statements:
 - (i) the partial order $\mathbb{P} = (P, <_{\mathbb{P}})$ is well-founded;
 - (ii) the sets A and B are a Sierpiński decomposition of the plane;
 - (iii) the subset $C \subseteq {}^{\omega}\omega$ is dominating in $({}^{\omega}\omega, \preceq^*)$.

(b)

- (i) Show that if D is a dense subset of the linear order $(\mathbb{R}, <)$ of real numbers and $\varphi: D \to D$ is an order-automorphism, then φ has a unique extension to an order-automorphism $\tilde{\varphi}$ of $(\mathbb{R}, <)$.
- (ii) Prove that any order-automorphism of $(\mathbb{R}, <)$ is determined by its values on \mathbb{Q} . Deduce that there are exactly 2^{\aleph_0} order-automorphisms of $(\mathbb{R}, <)$.
- (iii) Prove that there exists a rigid dense subset X of the real line such that $|X| = 2^{\aleph_0}$ and X has no non-trivial order-automorphism, i.e. no order-automorphism other than the identity.
- (c) Let κ be an infinite cardinal. Using a well-ordering of $[\kappa]^{\omega}$ or otherwise, prove that

 $\kappa \not\rightarrow (\omega)_2^{\omega}$

(Recall that the notation $\lambda \to (\mu)^{\alpha}_{\beta}$, where $\lambda, \mu, \alpha, \beta$ are ordinals, means: for every function $f : [\lambda]^{\alpha} \to \beta$, there exists $X \in [\lambda]^{\mu}$ such that $f \upharpoonright [X]^{\alpha}$ is constant.)

3

- $\mathbf{2}$
- (a) Define carefully any <u>two</u> of the following three italicized concepts:
 - (i) the partial order $\mathbb{X} = (X, <_{\mathbb{X}})$ is a Suslin line;
 - (ii) the tree $\mathbb{T} = (T, <_{\mathbb{T}})$ is a Kurepa tree;
 - (iii) the function $f: \delta \to \alpha$ is a cofinal map (in α).
- (b) Let κ be an infinite cardinal. Suppose for each ordinal $\delta < \kappa^+, C_\delta \subseteq \delta$ is closed and unbounded in δ and has order-type at most κ . For each ordinal $\beta < \kappa^+$, define the sequences $\langle \beta_0^{\alpha}, \ldots, \beta_n^{\alpha} \rangle$ and the functions $\rho_{\beta} : \beta \to [P(\beta)]^{<\omega}$ as follows. For $\alpha < \beta$, let $\beta_0^{\alpha} = \beta, \beta_{i+1}^{\alpha} = \min(C_{\beta_i^{\alpha}} \setminus \alpha) < \beta_i^{\alpha}$ until $\beta_n^{\alpha} = \alpha$. Set $\rho_{\beta}(\alpha) = \langle C_{\beta_i^{\alpha}} \cap \alpha : i < n \rangle$. Of the following three properties, prove (iii) and any other one of (i) and (ii).
 - (i) If $\xi < \alpha < \beta < \kappa^+$, then there exists a unique $j \in \omega$ such that for $(\forall i \leq j)(\beta_i^{\xi} = \beta_i^{\alpha})$ and $\xi \leq \beta_{j+1}^{\xi} < \alpha$.
 - (ii) If $\xi < \alpha < \beta < \kappa^+$ and $\rho_{\beta}(\xi)$ and $\rho_{\beta}(\alpha)$ are of the same length n, then $(\exists j < n)(C_{\beta_j^{\xi}} \cap \xi \text{ is a proper initial segment of } C_{\beta_j^{\alpha}} \cap \alpha).$
 - (iii) If $\alpha < \beta < \gamma$ and $\rho_{\beta}(\alpha) = \rho_{\gamma}(\alpha)$ then $\rho_{\beta} \upharpoonright \alpha = \rho_{\gamma} \upharpoonright \alpha$.
- (c) Prove that the Continuum Hypothesis CH implies the existence of an \aleph_2 -Aronszajn tree.

- 3
 - (a) Define carefully any two of the following three italicized concepts or statements:

4

- (i) the diagonal intersection of the family $\{C_{\alpha} \subseteq \delta : \alpha < \delta\}$ for a limit ordinal δ ;
- (ii) Fodor's Lemma for a regressive function $f: S \subset \lambda \to \lambda$;
- (iii) the combinatorial principle \clubsuit .
- (b) Suppose S is a stationary subset of ω_1 .
 - (i) Prove that \Diamond_S implies the existence of a non-special Aronszajn tree. Your proof should cover the main points of the argument.
 - (ii) Deduce that the failure of Suslin's Hypothesis is consistent relative to ZFC.
- (c) Let KH be the assertion: there exists a family $\mathcal{F} \subseteq P(\omega_1)$ such that $|\mathcal{F}| = \aleph_2$ and $(\forall \alpha < \omega_1)(\{X \cap \alpha : X \in \mathcal{F}\})$ is countable). For $X \in \mathcal{F}$, let $f_X : \omega_1 \to P(\omega_1)$ be defined as follows: $f_X(\alpha) = X \cap \alpha$.
 - (i) Suppose that there exists a Kurepa tree $\mathbb{T} = (T, \leq_{\mathbb{T}})$ tree such that $T = \omega_1$ and $\alpha <_{\mathbb{T}} \beta \Rightarrow \alpha < \beta$. Show that the assertion KH holds.
 - (ii) Using the functions $\{f_X : X \in \mathcal{F}\}$ or otherwise, prove that KH implies the existence of a normal (\aleph_1, \aleph_1) -tree possessing at least \aleph_2 branches of length \aleph_1 .

5

4

- (a) Define carefully any two of the following three italicized concepts or statements:
 - (i) the structure $\mathbb{M} = (M, E^{\mathbb{M}})$ is a standard model of ZFC;
 - (ii) the Mostowski Collapse theorem;
 - (iii) the formula $\varphi(v_1, \ldots, v_n)$ with free variables amongst v_1, \ldots, v_n in the language of ZFC is *absolute*.

(b)

- (i) Suppose that R is a binary relation on the class X. Prove that R is well-founded if, and only if, there exists a function $\rho: X \to Ord$ such that if xRy (i.e. $\langle x, y \rangle \in R$), then $\rho(x) < \rho(y)$.
- (ii) Show that the predicate "R is a well-founded binary relation" is absolute.
- (iii) Let **R** be a new predicate symbol distinct from \in ; for $\alpha \in Ord$ and $X \subseteq V_{\alpha}$, let $\langle V_{\alpha}, \in, X \rangle$ be the expansion of the standard structure (V_{α}, \in) in which **R** is interpreted as X. Suppose that κ is an inaccessible cardinal and $R \subseteq V_{\kappa}$. Show that the set $\{\alpha < \kappa : \langle V_{\alpha}, \in, R \cap V_{\alpha} \rangle$ is an elementary submodel of $\langle V_{\kappa}, \in, R \rangle$ is closed unbounded in κ .
- (c) A cardinal κ is *Mahlo* if κ is inaccessible and $\{\alpha < \kappa : \alpha \text{ is inaccessible}\}$ is stationary in κ .
 - (i) Suppose that κ is an inaccessible cardinal. Prove that κ is Mahlo if, and only if, for any $R \subseteq V_{\kappa}$, there is an inaccessible cardinal $\alpha < \kappa$ such that the structure $\langle V_{\alpha}, \in, R \cap V_{\alpha} \rangle$ is an elementary submodel of $\langle V_{\kappa}, \in, R \rangle$.
 - (ii) Showing first that the predicate "v is inaccessible" is Π_1 or otherwise, prove that if κ is Mahlo (in V), then $\mathbb{L} \models (\kappa \text{ is Mahlo})$, where \mathbb{L} is the universe of constructible sets.

 $\mathbf{5}$

- (a) Suppose that \mathbb{M} is a countable transitive model of ZFC. Choose two of the following three outcomes, and for each of your choices, describe a forcing that achieves the desired outcome in a \mathbb{P} -generic extension $\mathbb{M}[G]$.
 - (i) the inaccessible cardinal $\kappa \in M$ is collapsed to \aleph_1 while all cardinals above κ are preserved;
 - (ii) the continuum has size \aleph_3 (in $\mathbb{M}[G]$) while if $f \in M[G]$ is a function from an ordinal α into Ord, then there is a function $F \in M$ such that $dom(F) = \alpha, (\forall \xi < \alpha)(|F(\xi)| = \aleph_0)$, and $range(f) \subseteq \bigcup_{\xi < \alpha} F(\xi)$;
 - (iii) the combinatorial principle \diamondsuit holds in $\mathbb{M}[G]$.
- (b) Suppose G is \mathbb{P} -generic over \mathbb{M} , where \mathbb{P} is a partial order in a countable transitive model \mathbb{M} of ZFC. Prove that the Axiom Schema of Separation for a formula $\varphi(u, w, v_1, \ldots, v_n)$ holds in the generic extension $\mathbb{M}[G]$.
- (c)
- (i) Let \mathbb{P} be a countable separative partial order and let G be \mathbb{P} -generic over a countable transitive model \mathbb{M} of ZFC. Suppose that $Y \subseteq M$ is an uncountable set in M[G].

Show there exists an uncountable $X \in M$ such that

 $\mathbb{M}[G] \models (\check{X} \subseteq \dot{Y}).$

(ii) Let \mathbb{M} be a countable transitive model of ZFC such that (\mathbb{T} is a normal Suslin tree)^{\mathbb{M}}. Suppose ($\mathbb{P} = Fn(\omega, 2, \aleph_0)$)^{\mathbb{M}}. Let G be \mathbb{P} -generic over \mathbb{M} . Prove:

 $\mathbb{M}[G] \models (\mathbb{T} \text{ is a Suslim tree}).$

(a) Suppose \mathbb{P} is a partial order in the countable transitive model \mathbb{M} . Define carefully any <u>two</u> of the following three italicized concepts:

7

- (i) \mathbb{P} preserves cardinals;
- (ii) the *Definability Lemma* for a formula $\varphi(v_1, \ldots, v_n)$;
- (iii) \mathbb{P} is κ -closed for a cardinal $\kappa \in M$.

(b)

- (i) Suppose that $\mathcal{D} = \{D_n : n \in \omega\}$ is a family of dense sets in the partial order \mathbb{P} and $p \in P$. Show that there exists a \mathcal{D} -generic set $G \subseteq P$ such that $p \in G$.
- (ii) Let \mathbb{M} be a countable transitive model of ZFC. Prove there exists a forcing $\mathbb{P} \in M$ such that if $G \subseteq P$ is generic over \mathbb{M} , then

$$\begin{split} \aleph_1^{\mathbb{M}} &= \aleph_1^{\mathbb{M}[G]}; \\ (\omega_2)^{\mathbb{M}} &= (\omega_2)^{\mathbb{M}[G]}; \\ M[G] \text{ contains a surjection from } \aleph_1^{\mathbb{M}[G]} \text{ onto } (\mathcal{P}(\omega))^{\mathbb{M}[G]}. \end{split}$$

(iii) Using part (ii) or otherwise, prove that the Continuum Hypothesis is consistent relative to ZFC.

(c)

(i) Suppose that M is a countable transitive model of ZFC and

 $\mathbb{M} \models (\kappa = cf(\kappa) > \aleph_0, \text{ and } \mathbb{P} \text{ is a partial order satisfying the } \kappa\text{-chain condition}).$

Suppose $p \in P$ and $p \Vdash (C$ is a closed unbounded subset of κ). Prove that there exists a closed unbounded set $D \in M$ such that

$$p \Vdash (\check{D} \subseteq \check{C}).$$

(ii) Suppose that λ is an inaccessible cardinal possessing the partition property $\lambda \to (\lambda)_{\beta}^{<\omega}$ for every $\beta < \lambda$, i.e. for any $f : [\lambda]^{<\omega} \to \beta$, then there exists a subset $X \in [\lambda]^{\lambda}$ which is homogeneous for f: for every $n \in \omega, |f[[X]^n]| \leq 1$, that is, $f \upharpoonright [X]^n$ is constant (the constant may vary with n). Prove that if \mathbb{P} is a partial order of size less than λ , then

$$\Vdash_{\mathbb{P}} \lambda \to (\lambda)_2^{<\omega}$$

END OF PAPER