MATHEMATICAL TRIPOS Part III

Monday, 1 June, 2015 1:30 pm to 4:30 pm

PAPER 22

CATEGORY THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (b) Let \mathscr{C} be a locally small category, and let $X : \mathscr{C}^{\text{op}} \to \text{Set}$ be a presheaf on X. Give the definition of the *category of elements* of the presheaf X, and define the notion of *universal element* of X. Show that X has a universal element if and only if X is representable.
- (c) Let \mathscr{A} and \mathscr{B} be locally small categories categories, and let $H : \mathscr{A}^{\mathrm{op}} \times \mathscr{B} \to \operatorname{Set}$ be a functor such that for each object B of \mathscr{B} the resulting functor $H(-, B) : \mathscr{A}^{\mathrm{op}} \to \operatorname{Set}$ admits a representation (GB, ψ_B) . Show that there is a unique functor $G : \mathscr{B} \to \mathscr{A}$ given on objects by $B \mapsto GB$ such that the given isomorphisms $\psi_B : \mathscr{A}(-, GB) \xrightarrow{\sim} H(-, B)$ are natural in $B \in \mathscr{B}$.

CAMBRIDGE

 $\mathbf{2}$

Let \mathscr{A} and \mathscr{C} be locally small categories, and suppose that \mathscr{C} is complete. Let \mathscr{J} and \mathscr{K} be small categories.

(a) Let $D: \mathscr{A} \to [\mathscr{J}, \mathscr{C}]$ be a functor, and for each $A \in \mathsf{ob}\,\mathscr{A}$, let $\varprojlim_j(DA)j$ be a limit of $DA: \mathscr{J} \to \mathscr{C}$. Show that there is a functor $L: \mathscr{A} \to \mathscr{C}$ given on objects by $A \mapsto \varprojlim_j(DA)_j$. You may use standard results on representations of functors.

In proving the following you may use any results given in class or in the Examples Sheets.

- (b) Letting $F: \mathscr{B} \to \mathscr{C}$ be a functor, show that the following are equivalent.
 - (i) F preserves limits.
 - (ii) For each object C of \mathscr{C} , the composite functor

$$\mathscr{B} \xrightarrow{F} \mathscr{C} \xrightarrow{\mathscr{C}(C,-)} \operatorname{Set}$$

preserves limits.

(c) Show that for each object C of \mathscr{C} , the composite functor

$$[\mathcal{J}, \mathcal{C}] \xrightarrow{\lim} \mathcal{C} \xrightarrow{\mathcal{C}(C, -)} \operatorname{Set}$$

is representable by explicitly exhibiting a representing object.

- (d) Show that the functor $\varprojlim:[\mathscr{J},\mathscr{C}]\to \mathscr{C}$ preserves limits.
- (e) By using (d), show that for any functor $D: \mathscr{J} \times \mathscr{K} \to \mathscr{C}$,

$$\varprojlim_{j \in \mathscr{J}} \varprojlim_{k \in \mathscr{K}} D(j,k) \cong \varprojlim_{k \in \mathscr{K}} \varprojlim_{j \in \mathscr{J}} D(j,k) \ .$$

Here, the left- and right-hand-sides are defined as the limits of the composite functors

$$\mathscr{J} \xrightarrow{D^{(1)}} [\mathscr{K}, \mathscr{C}] \xrightarrow{\lim} \mathscr{C} , \ \mathscr{K} \xrightarrow{D^{(2)}} [\mathscr{J}, \mathscr{C}] \xrightarrow{\lim} \mathscr{C}$$

respectively, where $D^{(1)}$ and $D^{(2)}$ are given by $D^{(1)}j = D(j, -)$ and $D^{(2)}k = D(-, k)$, respectively.

Part III, Paper 22

[TURN OVER

3

- (a) Explicitly give the equivalent formulation of the notion of adjunction in terms of a pair of functors equipped with a pair of natural transformations satisfying the *triangular equations* (without proving that this formulation is equivalent to other formulations).
- (b) Given a presheaf $X : \mathscr{C}^{\text{op}} \to \text{Set}$ on a locally small category \mathscr{C} , show that the following are equivalent.
 - (i) X is representable.
 - (ii) X preserves limits, and the forgetful functor $G : \mathsf{Elts}(X) \to \mathscr{C}$ has a colimit.
- (c) Let $F : \mathscr{X} \to \mathscr{A}$ be a functor between locally small categories, and suppose that F preserves colimits. State and prove a result to the effect that F has a right adjoint if and only if certain (possibly large) colimits exist in \mathscr{X} .

$\mathbf{4}$

- (a) State the General Adjoint Functor Theorem.
- (b) State the Special Adjoint Functor Theorem.
- (c) Prove the Special Adjoint Functor Theorem. You may invoke the General Adjoint Functor Theorem, and you may use the fact that pullbacks of monomorphisms are monomorphisms.

- $\mathbf{5}$
- (a) Given an adjunction $K \frac{\rho}{\varepsilon} J : \mathscr{C} \to \mathscr{B}$, show that J is fully faithful if and only if ε is an isomorphism.

5

- (b) Let $K \xrightarrow{\rho} J : \mathscr{C} \hookrightarrow \mathscr{B}$, where J is the inclusion of a full, replete subcategory \mathscr{C} of \mathscr{B} , and let B be an object of \mathscr{B} . Show that the following conditions are equivalent:
 - (i) $B \in \mathsf{ob} \, \mathscr{C}$.
 - (ii) For every object B' of \mathscr{B} , the mapping

$$\mathscr{B}(KB',B) \xrightarrow{\mathscr{B}(\rho_{B'},B)} \mathscr{B}(B',B)$$

is a bijection.

- (iii) $\rho_B : B \to KB$ is an isomorphism in \mathscr{B} .
- (c) Show that any reflective subcategory of a complete category is complete.

6

Let $\mathbb{T} = (T, \eta, \mu)$ be a monad on a category \mathscr{X} .

- (a) Show that the forgetful functor $G^{\mathbb{T}}: \mathscr{X}^{\mathbb{T}} \to \mathscr{X}$ has a left adjoint $F^{\mathbb{T}}$, where $\mathscr{X}^{\mathbb{T}}$ is the category of \mathbb{T} -algebras.
- (b) Given an adjunction $F \dashv G : \mathscr{A} \to \mathscr{X}$ inducing \mathbb{T} , show that there is a functor $K : \mathscr{A} \to \mathscr{X}^{\mathbb{T}}$ such that $G^{\mathbb{T}}K = G$ and $KF = F^{\mathbb{T}}$.
- (c) Show that the following conditions are equivalent:
 - (i) $\mu: TT \to T$ is an isomorphism.
 - (ii) $T\eta = \eta T$.
 - (iii) For every T-algebra (A,a), the morphism $a:TA\to A$ is an isomorphism in $\mathscr X.$
 - (iv) The forgetful functor $G^{\mathbb{T}}: \mathscr{X}^{\mathbb{T}} \to \mathscr{X}$ is fully faithful.

END OF PAPER