

MATHEMATICAL TRIPOS Part III

Friday, 5 June, 2015 1:30 pm to 4:30 pm

PAPER 21

GEOMETRIC GROUP THEORY

There are **FOUR** questions in total. You may attempt all **FOUR** questions. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (a) What does it mean for a map of metric spaces $f : X \to Y$ to be a *quasi-isometric* embedding? What does it mean for f to be a *quasi-isometry*? When X and Y are finitely generated groups equipped with word metrics, explain briefly why these definitions are independent of the choices of word metrics.
- (b) Let Γ be a finitely generated group and H a subgroup of finite index. Prove that the inclusion map $H \hookrightarrow \Gamma$ is a quasi-isometry.
- (c) Let Γ be a finitely generated group. Recall that a *retraction* is a homomorphism $r: \Gamma \to H$ with a right-inverse $i: H \to \Gamma$. Show that if r is a retraction then H is also finitely generated and the right-inverse i is a quasi-isometric embedding.
- (d) Prove that every subgroup of a finitely generated abelian group is quasi-isometrically embedded.

[You may find it helpful to appeal to the classification of finitely generated abelian groups.]

- (e) Let X be a geodesic metric space. What does it mean to say that a subspace Y is κ -quasiconvex for some κ ?
- (f) Consider \mathbb{Z}^2 equipped with its standard generating set. Give an example of a subgroup H such that, in $\operatorname{Cay}(\mathbb{Z}^2)$, H is quasi-isometrically embedded, but not κ -quasiconvex for any κ .

UNIVERSITY OF

3

- $\mathbf{2}$
- (a) State and prove the Schwarz–Milnor Lemma.
- (b) What does it mean to say that a geodesic metric space is δ -hyperbolic for some δ ? What does it mean to say that a group is hyperbolic?
- (c) Let X be a δ -hyperbolic metric space and let $c, c' : [a, b] \to X$ be geodesics with c(a) = c'(a). Prove that

$$d(c(t), c'(t)) \leq 2\delta + d(c(b), c'(b))$$

for any $t \in [a, b]$.

(d) Let Γ be a group acting cocompactly and properly discontinuously by isometries on a proper, geodesic, δ -hyperbolic metric space X. Stating carefully any results from the course that you need, prove that Γ is hyperbolic and that the conjugacy problem is solvable in Γ .

3

- (a) Let G be a group acting by isometries on a tree T without inversions. Explain how to recover a graph of groups with fundamental group G from the action of G on T.
 [You do not need to show that your construction is independent of the choices you make.]
- (b) Consider the group $G = \mathbb{Z}/2 * \mathbb{Z}/3$. Prove that every element of G with finite order is conjugate into either the obvious copy of $\mathbb{Z}/2$ or the obvious copy of $\mathbb{Z}/3$.
- (c) By considering a homomorphism $G \to \mathbb{Z}/6$ or otherwise, find a subgroup K of finite index in G in which every non-trivial element has infinite order.
- (d) Prove that K is free.

- $\mathbf{4}$
- (a) State and prove Van Kampen's Lemma.
- (b) Let $\mathcal{P} \equiv \langle a, b, c \mid [a, b], [b, c], [c, a] \rangle$, the standard presentation of \mathbb{Z}^3 . Show from first principles that $\delta_{\mathcal{P}}(n) \succeq n^2$.
- (c) Exhibit a reduced word $w \in \{a, b, c\}^*$, null-homotopic in \mathbb{Z}^3 , that has two distinct Van Kampen diagrams of minimal area.

END OF PAPER