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(a) What does it mean for a map of metric spaces f : X → Y to be a quasi-isometric

embedding? What does it mean for f to be a quasi-isometry? When X and Y
are finitely generated groups equipped with word metrics, explain briefly why these
definitions are independent of the choices of word metrics.

(b) Let Γ be a finitely generated group and H a subgroup of finite index. Prove that
the inclusion map H →֒ Γ is a quasi-isometry.

(c) Let Γ be a finitely generated group. Recall that a retraction is a homomorphism
r : Γ → H with a right-inverse i : H → Γ. Show that if r is a retraction then H is
also finitely generated and the right-inverse i is a quasi-isometric embedding.

(d) Prove that every subgroup of a finitely generated abelian group is quasi-isometrically
embedded.

[You may find it helpful to appeal to the classification of finitely generated abelian
groups.]

(e) Let X be a geodesic metric space. What does it mean to say that a subspace Y is
κ-quasiconvex for some κ?

(f) Consider Z
2 equipped with its standard generating set. Give an example of a

subgroup H such that, in Cay(Z2), H is quasi-isometrically embedded, but not
κ-quasiconvex for any κ.
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(a) State and prove the Schwarz–Milnor Lemma.

(b) What does it mean to say that a geodesic metric space is δ-hyperbolic for some δ?
What does it mean to say that a group is hyperbolic?

(c) Let X be a δ-hyperbolic metric space and let c, c′ : [a, b] → X be geodesics with
c(a) = c′(a). Prove that

d(c(t), c′(t)) 6 2δ + d(c(b), c′(b))

for any t ∈ [a, b].

(d) Let Γ be a group acting cocompactly and properly discontinuously by isometries
on a proper, geodesic, δ-hyperbolic metric space X. Stating carefully any results
from the course that you need, prove that Γ is hyperbolic and that the conjugacy
problem is solvable in Γ.

3

(a) Let G be a group acting by isometries on a tree T without inversions. Explain how
to recover a graph of groups with fundamental group G from the action of G on T .

[You do not need to show that your construction is independent of the choices you
make.]

(b) Consider the group G = Z/2 ∗Z/3. Prove that every element of G with finite order
is conjugate into either the obvious copy of Z/2 or the obvious copy of Z/3.

(c) By considering a homomorphism G → Z/6 or otherwise, find a subgroup K of finite
index in G in which every non-trivial element has infinite order.

(d) Prove that K is free.
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(a) State and prove Van Kampen’s Lemma.

(b) Let P ≡ 〈a, b, c | [a, b], [b, c], [c, a]〉, the standard presentation of Z3. Show from first
principles that δP(n) � n2.

(c) Exhibit a reduced word w ∈ {a, b, c}∗, null-homotopic in Z
3, that has two distinct

Van Kampen diagrams of minimal area.
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