

MATHEMATICAL TRIPOS Part III

Wednesday, 3 June, 2015 1:30 pm to 4:30 pm

PAPER 20

TOPICS IN ALGEBRAIC GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

(a) Define a morphism $X \to Y$ between schemes.

(b) Let X be an arbitrary scheme, $Y = \operatorname{Spec} A$ an affine scheme. Show that the set of morphisms $X \to Y$ is in one-to-one correspondence with the set of ring homomorphisms $A \to \Gamma(X, \mathcal{O}_X)$.

(c) Let A be a local ring. Show that the set of morphisms Spec $A \to \mathbb{P}^n_{\mathbb{Z}}$ is in one-toone correspondence with the following set T. We consider the subset $S \subseteq A^{n+1}$ consisting of (n + 1)-tuples of elements in A with at least one entry in A^{\times} , the group of units of A. Then T is the set of equivalence classes of S for the equivalence relation such that $(a_i) \sim (a'_i)$ if and only if there exists $a \in A^{\times}$ such that $(aa_i) = (a'_i)$.

State briefly what goes wrong with your argument if A is not a local ring?

$\mathbf{2}$

(a) Define the notion of scheme-theoretic fibre of a morphism $f: X \to Y$.

(b) Describe the fibres of the following morphisms defined by the obvious maps of rings in each case.

Spec $k[T, U]/(T^2 - U^2) \to \operatorname{Spec} k[T]$ Spec $\mathbb{Z}[T]/(T^2 + 1) \to \operatorname{Spec} \mathbb{Z}$ Spec $\mathbb{C} \to \operatorname{Spec} \mathbb{Z}$

(c) Let S, X and Y be schemes, $f : X \to S$, $g : Y \to S$ be morphisms. Let $p : X \times_S Y \to X$, $q : X \times_S Y \to Y$ be the projections. Show that there exists a point $z \in X \times_S Y$ with p(z) = x, q(z) = y if and only if f(x) = g(y). [Hint: Use the fact that if $K \subseteq L, L'$ are two field extensions of K, then $L \otimes_K L'$ is non-zero.]

(d) Show that a morphism being surjective is stable under base-change.

3

(a) State Riemann-Roch for curves.

(b) Let C be a non-singular projective curve of genus 4, and assume C is not hyperelliptic. Show C can be embedded in \mathbb{P}^3 as a complete intersection of a quadric surface and cubic surface.

(c) Let $C \subseteq \mathbb{P}^n$ be a non-singular projective curve of degree 5, and assume that C is not contained in a plane. Show the genus of C is at most 2.

UNIVERSITY OF

4

- (a) Define the notion of closed immersion.
- (b) Show that if $f: X \to Y$ and $g: Y \to Z$ are closed immersions, then so is $g \circ f$.

3

- (c) Show that being a closed immersion is stable under base-change.
- (d) Define the notion of a separated morphism.

(e) Let $f: X \to Y$, $g: Y \to Z$ be morphisms with g separated. Show that the morphism $\Gamma_f: X \to X \times_Z Y$ induced by the identity map $X \to X$ and $f: X \to Y$ is a closed immersion.

Suppose further that $g \circ f$ is a closed immersion. Show that f is also a closed immersion.

$\mathbf{5}$

(a) Let X be a scheme over a field k, \mathcal{L} a line bundle on X.

Say what it means for \mathcal{L} to be generated by global sections.

If \mathcal{L} is generated by global sections, sketch how to construct a morphism $X \to \mathbb{P}_k^n$.

If X is a projective non-singular scheme, state a criterion for when such a morphism is a closed immersion.

(b) Let $C \subseteq \mathbb{P}^2$ be an irreducible curve of degree d. What is $\operatorname{Cl}(\mathbb{P}^2 \setminus C)$?

(c) Let $X \subseteq \mathbb{P}^3$ be the quadric surface given by $x_0x_1 - x_2x_3 = 0$. Consider the linear system \mathfrak{d} on X given by

 $\mathfrak{d} = \{ X \cap H \, | \, H \subseteq \mathbb{P}^3 \text{ a plane containing } P = (1, 0, 0, 1) \}.$

Show this linear system defines a morphism $\varphi : X \setminus \{P\} \to \mathbb{P}^2$. Describe the fibres of this morphism.

(d) Consider the curve $C \subseteq \mathbb{A}^2$ defined by the equation $x^2 - y^5 = 0$. Describe a sequence of blow-ups $X_n \to X_{n-1} \to \cdots \to X_1 = \mathbb{A}^2$ such that the proper transform of C in X_n has no singular point mapping to $0 \in \mathbb{A}^2$.

END OF PAPER