

MATHEMATICAL TRIPOS Part III

Wednesday, 3 June, 2015 9:00 am to 12:00 pm

PAPER 19

HOMOTOPY THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 Define what it means for a map $\pi : E \to B$ to be a *Serre fibration*. Let $e_0 \in E$, $b_0 := \pi(e_0), F := \pi^{-1}(b_0)$, and B be path-connected. Describe the long exact sequence relating $\pi_*(F, e_0), \pi_*(E, e_0)$, and $\pi_*(B, b_0)$, defining all the maps involved.

[You do not need to prove that this sequence is exact.]

Let *E* and *B* be CW-complexes, *B* be simply-connected, $\pi : E \to B$ be a Serre fibration with fibre a K(G, n) for an abelian group *G*, and $H^{n+1}(B; G) = 0$. Show that *E* is weakly homotopy equivalent to $B \times K(G, n)$.

2 Compute the integral cohomology ring of ΩS^{2n+1} for $n \ge 1$, stating carefully any results which you use.

Concatenation of loops defines a continuous map

 $\mu: \Omega S^{2n+1} \times \Omega S^{2n+1} \longrightarrow \Omega S^{2n+1}.$

Describe briefly how this may be used to make $H_*(\Omega S^{2n+1}; \mathbb{Z})$ into a ring, and compute a presentation for this ring.

3 State the Hurewicz theorem modulo the Serre class of finitely generated abelian groups.

If X is a simply-connected space for which $H_i(X;\mathbb{Z})$ is finitely generated for each $i \ge 0$, show that there is a CW-approximation $f: C \to X$ where C has finitely many cells of each dimension.

Suppose that in addition $H_i(X;\mathbb{Z}) = 0$ for all i > n. Show that there is a CW-approximation $f: C \to X$ where C is a finite CW-complex of dimension (n + 1).

4 Compute $H^*(K(\mathbb{Z}, n); \mathbb{Q})$ as a ring for all $n \ge 1$. Hence compute $\pi_i(S^{2n+1}) \otimes \mathbb{Q}$ for all $n \ge 0$ and $i \ge 1$, and compute $\pi_i(\mathbb{CP}^2 \# \mathbb{CP}^2) \otimes \mathbb{Q}$ for all $i \ge 1$.

5 Compute $H^i(K(\mathbb{Z}/2, n); \mathbb{F}_2)$ for all $n \ge 2$ and $i \le n+3$. Describe your answer in terms of Steenrod squares.

[You may state the \mathbb{F}_2 -cohomology ring of $K(\mathbb{Z}/2, 1)$.]

Hence compute $\pi_i(\mathbb{RP}^{10}/\mathbb{RP}^6)$ for $1 \leq i \leq 9$.

END OF PAPER