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1. Let X be a real manifold with dimRX = 2n. Define what is meant by a holomorphic
atlas on X and also what is meant by an almost complex structure on X. Prove
that any holomorphic atlas on X induces a natural almost complex structure.

2. Now suppose that J is an arbitary almost complex structure on X. Explain how
J defines the vector bundle TX0,1 and TX0,1. If z1, . . . , zn are local holomorphic
coordinates on X define the quantities ∂

∂zj
and ∂

∂zj
and prove that the sets

{

∂

∂z1
, . . . ,

∂

∂zn

}

and
{

∂

∂z1
, . . . ,

∂

∂zn

}

give local frames for TX1,0 and TX0,1 respectively.

3. For smooth vector fields α, β on X define

N(α, β) = 2([Jα, Jβ] − [α, β]− J [α, Jβ] − J [Jα, β])

where [α, β] = αβ − βα denotes the Lie bracket on vector fields. Prove that if J is
the almost complex structure induced by a complex structure then N = 0.

4. Now write the decomposition of a smooth vector field α as α = α′ + α′′ where
α′ ∈ C∞(X,TX1,0) and α′′ ∈ C∞(X,TX0,1). Prove that

N(α, β)′′ = −8[α′, β′]′′

and show that N = 0 if and only if both TX1,0 and TX0,1 are involutive under the
Lie bracket (i.e. if and only if whenever α and β are smooth sections of T 1,0X then
so is [α, β] and similarly for T 0,1X).
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(a). Let X be a complex manifold. Define the sheaf Ak of k forms and the sheaf Ap,q of
(p, q)-forms on X and show that

Ak(X) =
⊕

p+q=k

Ap,q(X).

Finally define the Dolbeaut cohomology groups Hp,q

∂
(X).

(b). The Bott-Chern cohomology group of X is defined to be

H
p,q
BC(X) =

{α ∈ Ap,q(X) : dα = 0}

∂∂Ap−1,q−1(X)
.

Explain how this is well defined, and prove that complex conjugation gives an
identification H

p,q
BC(X) = H

q,p
BC(X).

(c). Prove that if B is a polydisk then H
p,q
BC(B) = 0 for all p, q > 1. Does this statement

still hold if B is replaced by an arbitary complex manifold? Justify your answer.

[You may use the Poincaré Lemmas which states that if B is a polydisk then the
de-Rham cohomology Hk

dR(B) = 0 for all k > 1 and H
p,q

∂
(B) = 0 for all q > 1. ]

(d). Consider next the map φ : Hp,q
BC(X) → H

p,q

∂
(X) which takes the class of α ∈ Ap,q(X)

in H
p,q
BC(X) to its class in H

p,q

∂
(X). Prove that φ is well defined.

Now suppose that X is compact and Kähler. Prove that the map φ is surjective.
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(a). Let F be a sheaf of abelian groups on a complex manifold X and U be a locally
finite open cover of X. Define the group Cp(U ,F) of Cech cochains, the coboundary
map

δ : Cp(U ,F) → Cp+1(U ,F).

Using this define briefly the Cech cohomology groups

Ȟp(X,F).

(b). Now suppose X is compact with dimX > 2 and let

X0 = X \ {p1, . . . , pr}

where p1, . . . , pr are distinct points in X. Show that for any holomorphic vector
bundle E on X there is an isomorphism

Ȟp(X,O(E)) ≃ Ȟp(X0,O(E|X0
)) for all p > 0

where O(E) denotes the sheaf of holomorphic sections of E, and E|X0
denotes the

restriction of E to X0.

Does this continue to be true if dimX = 1? Justify your answer.

[You may assume the following version of Hartog’s Theorem without proof: any
holomorphic function f : B \ {0} → C where B is the unit ball in C

n with n > 2
extends to a holomorphic f : B → C].

(c). Consider next X = P
1. Define the tautological line bundle OP1(−1) as well as the

line bundles OP1(k) for all k ∈ Z.

Now suppose [z, w] are homogeneous coordinates on P
1, and let U = {U0, U1} where

U0 = {[1, w] : w ∈ C} and U1 = {[z, 1] : z ∈ C}. Using your definition of OP1(−1),
write down trivialisations ofOP1(−1)|U0

andOP1(−1)|U1
and compute the associated

transition function. Using this, identify the groups

Cq := Cq(U ,OP1(k))

for q = 0, 1 and all k > 0 as well as the coboundary map δ : C0 → C1. Finally use
this to compute

dimH0(P1,OP1(k)) for all k > 0.
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(a). Let E be a holomorphic vector bundle on a Kähler manifold X and let h be a
hermitian metric on E. Define the Chern connection ∇h associated to h and prove
that it exists and is unique. Define also the curvature form Fh of ∇h explaining how
it may be considered as an element of A2(End(E)).

(b). Explain how ∇h induces operators

∇′

h : A
p,q(E) → Ap+1,q(E) and ∇′′

h : A
p,q(E) → Ap,q+1(E)

and define the two associated Laplacian operators ∆′ and ∆′′. Prove the identity

∆′′ = ∆′ + [iFh,Λ]

where Λ denotes the dual of the Lefschetz operator L.

[You may assume the identities [Λ,∇′′

h] = −i(∇′

h)
∗ and [Λ,∇′

h] = i(∇′′

h)
∗]

(c). Now assume that X is compact. Define what it means for a holomorphic line bundle
F on X to be positive. Show that if F is a positive holomorphic line bundle and E

is any holomorphic vector bundle then there exists an m0 such that for all m > m0

we have
H0(X,E ⊗ F−m) = 0

where F−m = (F ∗)⊗m.

[You may assume, if needed, that [L,Λ] = (p+ q − n) Id on Ap,q].

(d). Is it true that in the above one can choose m0 that works uniformly over all
holomorphic vector bundles E? Justify your answer.
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(a). Let E be a holomorphic vector bundle on a compact complex manifold X. Define
the sheaf Ap,q(E) of (p, q)-forms with values in E, and state Dolbeaut’s Theorem
for (p, q)-forms with values in E.

(b). Assume now ω is a Kähler form on X and h is a hermitian metric on E. State the
Hodge decomposition Theorem for (p, q)-forms with values in E, defining clearly
the spaces involved.

(c). Suppose now L is a holomorphic line bundle on X and h is a positive hermitian
metric on L such that iFh = ω where Fh denotes the curvature of the Chern
connection associated to h. The Spectral Gap Theorem states that there exists
a k0 and ǫ > 0 such that for all k > k0 and q > 1 the lowest eigenvalue of
∆∂

Lk
: A0,q(X,Lk) → A0,q(X,Lk) is bounded below by ǫk.

Explain how to deduce from this that

Hq(X,Lk) = 0 for q > 1 and k > k0.

(d). Finally supposeX is a compact complex manifold with dimX = 1 and L is a positive
holomorphic line bundle on X. Suppose z is a local coordinate on X defined on
a coordinate chart U centered at x0 ∈ X and let ζ be a holomorphic frame for L

defined on U . Prove that there exists a k0 such that for any k > k0 and any choice
of a−1, . . . , a−r ∈ C, there exists an sk ∈ H0(X \ {x0}, L

k) which locally near x0
can be written as

sk(z) =





−1
∑

j=−r

ajz
j +

∑

j>0

ajkz
j



 ζk for z 6= 0

where ajk ∈ C for j > 0.
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