

MATHEMATICAL TRIPOS Part III

Thursday, 4 June, 2015 1:30 pm to 4:30 pm

PAPER 18

COMPLEX MANIFOLDS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

- 1
- 1. Let X be a real manifold with $\dim_{\mathbb{R}} X = 2n$. Define what is meant by a holomorphic atlas on X and also what is meant by an almost complex structure on X. Prove that any holomorphic atlas on X induces a natural almost complex structure.
- 2. Now suppose that J is an arbitrary almost complex structure on X. Explain how J defines the vector bundle $TX^{0,1}$ and $TX^{0,1}$. If z_1, \ldots, z_n are local holomorphic coordinates on X define the quantities $\frac{\partial}{\partial z_j}$ and $\frac{\partial}{\partial \overline{z_j}}$ and prove that the sets

$$\left\{\frac{\partial}{\partial z_1},\ldots,\frac{\partial}{\partial z_n}\right\}$$

and

$$\left\{\frac{\partial}{\partial \overline{z}_1}, \dots, \frac{\partial}{\partial \overline{z}_n}\right\}$$

give local frames for $TX^{1,0}$ and $TX^{0,1}$ respectively.

3. For smooth vector fields α, β on X define

$$N(\alpha,\beta) = 2([J\alpha, J\beta] - [\alpha, \beta] - J[\alpha, J\beta] - J[J\alpha, \beta])$$

where $[\alpha, \beta] = \alpha\beta - \beta\alpha$ denotes the Lie bracket on vector fields. Prove that if J is the almost complex structure induced by a complex structure then N = 0.

4. Now write the decomposition of a smooth vector field α as $\alpha = \alpha' + \alpha''$ where $\alpha' \in C^{\infty}(X, TX^{1,0})$ and $\alpha'' \in C^{\infty}(X, TX^{0,1})$. Prove that

$$N(\alpha,\beta)'' = -8[\alpha',\beta']''$$

and show that N = 0 if and only if both $TX^{1,0}$ and $TX^{0,1}$ are involutive under the Lie bracket (i.e. if and only if whenever α and β are smooth sections of $T^{1,0}X$ then so is $[\alpha, \beta]$ and similarly for $T^{0,1}X$).

UNIVERSITY OF

- $\mathbf{2}$
 - (a). Let X be a complex manifold. Define the sheaf \mathcal{A}^k of k forms and the sheaf $\mathcal{A}^{p,q}$ of (p,q)-forms on X and show that

$$\mathcal{A}^k(X) = \bigoplus_{p+q=k} \mathcal{A}^{p,q}(X).$$

Finally define the Dolbeaut cohomology groups $H^{p,q}_{\overline{\partial}}(X)$.

(b). The *Bott-Chern* cohomology group of X is defined to be

$$H^{p,q}_{BC}(X) = \frac{\{\alpha \in \mathcal{A}^{p,q}(X) : d\alpha = 0\}}{\partial \overline{\partial} \mathcal{A}^{p-1,q-1}(X)}.$$

Explain how this is well defined, and prove that complex conjugation gives an identification $H^{p,q}_{BC}(X) = \overline{H^{q,p}_{BC}(X)}$.

- (c). Prove that if B is a polydisk then $H^{p,q}_{BC}(B) = 0$ for all $p, q \ge 1$. Does this statement still hold if B is replaced by an arbitrary complex manifold? Justify your answer. [You may use the Poincaré Lemmas which states that if B is a polydisk then the de-Rham cohomology $H^k_{dR}(B) = 0$ for all $k \ge 1$ and $H^{p,q}_{\overline{\partial}}(B) = 0$ for all $q \ge 1$.]
- (d). Consider next the map $\phi \colon H^{p,q}_{BC}(X) \to H^{p,q}_{\overline{\partial}}(X)$ which takes the class of $\alpha \in \mathcal{A}^{p,q}(X)$ in $H^{p,q}_{BC}(X)$ to its class in $H^{p,q}_{\overline{\partial}}(X)$. Prove that ϕ is well defined.

Now suppose that X is compact and Kähler. Prove that the map ϕ is surjective.

CAMBRIDGE

- 3
 - (a). Let \mathcal{F} be a sheaf of abelian groups on a complex manifold X and \mathcal{U} be a locally finite open cover of X. Define the group $C^p(\mathcal{U}, \mathcal{F})$ of *Cech cochains*, the *coboundary* map

 $\delta \colon C^p(\mathcal{U}, \mathcal{F}) \to C^{p+1}(\mathcal{U}, \mathcal{F}).$

Using this define briefly the Cech cohomology groups

$$\check{H}^p(X,\mathcal{F}).$$

(b). Now suppose X is compact with dim $X \ge 2$ and let

$$X_0 = X \setminus \{p_1, \dots, p_r\}$$

where p_1, \ldots, p_r are distinct points in X. Show that for any holomorphic vector bundle E on X there is an isomorphism

$$\check{H}^p(X, \mathcal{O}(E)) \simeq \check{H}^p(X_0, \mathcal{O}(E|_{X_0}))$$
 for all $p \ge 0$

where $\mathcal{O}(E)$ denotes the sheaf of holomorphic sections of E, and $E|_{X_0}$ denotes the restriction of E to X_0 .

Does this continue to be true if $\dim X = 1$? Justify your answer.

[You may assume the following version of Hartog's Theorem without proof: any holomorphic function $f: B \setminus \{0\} \to \mathbb{C}$ where B is the unit ball in \mathbb{C}^n with $n \ge 2$ extends to a holomorphic $\overline{f}: B \to \mathbb{C}$].

(c). Consider next $X = \mathbb{P}^1$. Define the *tautological line bundle* $\mathcal{O}_{\mathbb{P}^1}(-1)$ as well as the line bundles $\mathcal{O}_{\mathbb{P}^1}(k)$ for all $k \in \mathbb{Z}$.

Now suppose [z, w] are homogeneous coordinates on \mathbb{P}^1 , and let $\mathcal{U} = \{U_0, U_1\}$ where $U_0 = \{[1, w] : w \in \mathbb{C}\}$ and $U_1 = \{[z, 1] : z \in \mathbb{C}\}$. Using your definition of $\mathcal{O}_{\mathbb{P}^1}(-1)$, write down trivialisations of $\mathcal{O}_{\mathbb{P}^1}(-1)|_{U_0}$ and $\mathcal{O}_{\mathbb{P}^1}(-1)|_{U_1}$ and compute the associated transition function. Using this, identify the groups

$$C^q := C^q(\mathcal{U}, \mathcal{O}_{\mathbb{P}^1}(k))$$

for q = 0, 1 and all $k \ge 0$ as well as the coboundary map $\delta \colon C^0 \to C^1$. Finally use this to compute

dim
$$H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(k))$$
 for all $k \ge 0$.

CAMBRIDGE

- $\mathbf{4}$
 - (a). Let E be a holomorphic vector bundle on a Kähler manifold X and let h be a hermitian metric on E. Define the *Chern connection* ∇_h associated to h and prove that it exists and is unique. Define also the curvature form F_h of ∇_h explaining how it may be considered as an element of $\mathcal{A}^2(End(E))$.
 - (b). Explain how ∇_h induces operators

$$\nabla'_h \colon \mathcal{A}^{p,q}(E) \to \mathcal{A}^{p+1,q}(E) \text{ and } \nabla''_h \colon \mathcal{A}^{p,q}(E) \to \mathcal{A}^{p,q+1}(E)$$

and define the two associated Laplacian operators Δ' and Δ'' . Prove the identity

$$\Delta'' = \Delta' + [iF_h, \Lambda]$$

where Λ denotes the dual of the Lefschetz operator L.

[You may assume the identities $[\Lambda, \nabla_h''] = -i(\nabla_h')^*$ and $[\Lambda, \nabla_h'] = i(\nabla_h'')^*$]

(c). Now assume that X is compact. Define what it means for a holomorphic line bundle F on X to be *positive*. Show that if F is a positive holomorphic line bundle and E is any holomorphic vector bundle then there exists an m_0 such that for all $m \ge m_0$ we have

$$H^0(X, E \otimes F^{-m}) = 0$$

where $F^{-m} = (F^*)^{\otimes m}$.

[You may assume, if needed, that $[L, \Lambda] = (p+q-n) \operatorname{Id} on \mathcal{A}^{p,q}$].

(d). Is it true that in the above one can choose m_0 that works uniformly over all holomorphic vector bundles E? Justify your answer.

 $\mathbf{5}$

- (a). Let E be a holomorphic vector bundle on a compact complex manifold X. Define the sheaf $\mathcal{A}^{p,q}(E)$ of (p,q)-forms with values in E, and state Dolbeaut's Theorem for (p,q)-forms with values in E.
- (b). Assume now ω is a Kähler form on X and h is a hermitian metric on E. State the Hodge decomposition Theorem for (p,q)-forms with values in E, defining clearly the spaces involved.
- (c). Suppose now L is a holomorphic line bundle on X and h is a positive hermitian metric on L such that $iF_h = \omega$ where F_h denotes the curvature of the Chern connection associated to h. The Spectral Gap Theorem states that there exists a k_0 and $\epsilon > 0$ such that for all $k \ge k_0$ and $q \ge 1$ the lowest eigenvalue of $\Delta_{\overline{\partial}_{rk}} : \mathcal{A}^{0,q}(X, L^k) \to \mathcal{A}^{0,q}(X, L^k)$ is bounded below by ϵk .

Explain how to deduce from this that

$$H^q(X, L^k) = 0$$
 for $q \ge 1$ and $k \ge k_0$.

(d). Finally suppose X is a compact complex manifold with dim X = 1 and L is a positive holomorphic line bundle on X. Suppose z is a local coordinate on X defined on a coordinate chart U centered at $x_0 \in X$ and let ζ be a holomorphic frame for L defined on U. Prove that there exists a k_0 such that for any $k \ge k_0$ and any choice of $a_{-1}, \ldots, a_{-r} \in \mathbb{C}$, there exists an $s_k \in H^0(X \setminus \{x_0\}, L^k)$ which locally near x_0 can be written as

$$s_k(z) = \left(\sum_{j=-r}^{-1} a_j z^j + \sum_{j \ge 0} a_{jk} z^j\right) \zeta^k \text{ for } z \ne 0$$

where $a_{jk} \in \mathbb{C}$ for $j \ge 0$.

END OF PAPER