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1

Define what is meant by a tangent vector at a point p in a manifold M . Explain
why the set of all tangent vectors at p is a vector space of dimension equal to n = dimM .
Define the cotangent space T ∗

pM and state the transformation law for coordinates of an
element α ∈ T ∗

pM corresponding to a change of local coordinates on M around p.

Define the cotangent bundle T ∗M . Construct a family of charts making T ∗M into
a manifold and a vector bundle over M .

Let ai denote the coordinates on the cotangent spaces with respect to a basis dxi,
where xi are local coordinates onM . Show that the 2-forms

∑n
i=1 dai∧dxi are independent

of the choice of local coordinates and are local expressions for some 2-form η which is well-
defined on all of T ∗M . Show that the manifold T ∗M is always orientable.

[Basic results about orientation on manifolds may be assumed if accurately stated.]

2

Define what is meant by a vector field on a manifold M and by the Lie bracket [X,Y ]
of vector fields X,Y on M . (If your definition of [X,Y ] uses a choice of local coordinates,
then you should show that the Lie bracket is independent of that choice.)

Let G be a Lie group; what does it mean to say that a vector field X on G is left-
invariant? Show that the left-invariant vector fields on G form a vector space isomorphic
to the tangent space g = TIG at the identity element and that the Lie bracket of two
left-invariant vector fields is left-invariant.

Now let G = SO(n) be a special orthogonal group. Explain briefly how so(n) =
TISO(n) may be identified with the space of all skew-symmetric n×n real matrices. Show
that the Lie bracket of left-invariant vector fields induces a Lie bracket on so(n) given by
[B1, B2] = B1B2 −B2B1.

[You may assume that SO(n) is an embedded submanifold of GL(n,R).]
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Define a covariant derivative ∇ on a vector bundle π : E → M . Explain what is
meant by the covariant derivative ∇A induced by a connection A on E. Prove that every
covariant derivative on E is induced by some connection.

Let γ : I → M be an embedded curve (i.e. a 1-dimensional embedded submanifold),
where I ⊂ R is an open interval and [0, 1] ⊂ I. Define what is meant by a horizontal lift γ̃

of γ with respect to A. Show that for each a0 ∈ E with π(a0) = γ(0) there exists unique
horizontal lift of γ satisfying γ̃(0) = a0 and the assignment γ̃(0) 7→ γ̃(1) defines a linear
isomorphism Eγ(0) → Eγ(1) between respective fibres of E. (You should state clearly any
standard results you require about ordinary differential equations.)

Now suppose that E is endowed with an inner product 〈·, ·〉 on the fibres (smoothly
varying with the fibres), such that

X〈s1, s2〉 = 〈∇A
Xs1, s2〉+ 〈s1,∇

A
Xs2〉, (∗)

for all vector fields X on M and all sections s1, s2 of E. Here ∇A
Xs denotes a section of

E obtained by the bilinear pairing of the 1-form ∇As with a vector field X. Prove that
then for all embedded curves γ : I → M the linear maps Eγ(0) → Eγ(1) defined above are
isometries.

[You may assume that a smooth section of E or TM along γ can be extended to a

smooth section over some open neighbourhood of γ(I) in M .]

4

Let (M,g) be a Riemannian manifold. State the ordinary differential equations
satisfied by geodesics on M in local coordinates, defining clearly all terms appearing in
the equation. Define what is meant by the exponential map at p ∈ M and prove that the
exponential map induces well-defined local coordinates (the geodesic coordinates) on some
neighbourhood of p.

Prove that the coefficients Γi
jk of the Levi–Civita connection D of g written in the

geodesic coordinates at p vanish at p.

What is a geodesic sphere around p? State and prove Gauss’ lemma.

[You may assume that solutions of the geodesic ODEs are parametrized with constant

speed. Basic properties of symmetric connections on M may be used without proof if

accurately stated.]
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Let (M,g) be an oriented Riemannian manifold. Define the inner product induced
by g on the fibres of ΛpT ∗M . Define the Hodge ∗ operator for M (you are not expected
to define the volume form of g) and compute the square of ∗ on differential p-forms.

Deduce from Stokes’ theorem the expression for the formal (L2) adjoint δ of the
exterior derivative in terms of ∗ and d. Define the harmonic forms on M and show that
if M is compact then every harmonic form α satisfies dα = 0 and δα = 0.

Now let N be a 4-dimensional compact oriented Riemannian manifold. Show that
every α ∈ Ω2(N) may be written as α = α+ + α−, for some unique α± satisfying
∗α± = ±α (such α± are called, respectively, self-dual and anti-self-dual 2-forms). Show
that the expression

∫
N
α∧β, for closed α, β ∈ Ω2(N), induces a non-degenerate symmetric

bilinear form of signature (b+(N), b−(N)) on the de Rham cohomology H2
dR(N), where

b±(N) = dimH±(N) and H±(N) is the space of harmonic (anti-)self-dual forms on N .

State the Hodge decomposition theorem. Show that every exact 3-form on N can
be expressed as the exterior derivative of a self-dual 2-form.

[You may assume that every de Rham cohomology class on N is represented by a

unique harmonic form.]
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