MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2015 $-1:30~\mathrm{pm}$ to 4:30 pm

PAPER 17

DIFFERENTIAL GEOMETRY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

 $\mathbf{1}$

Define what is meant by a *tangent vector* at a point p in a manifold M. Explain why the set of all tangent vectors at p is a vector space of dimension equal to $n = \dim M$. Define the *cotangent space* T_p^*M and state the transformation law for coordinates of an element $\alpha \in T_p^*M$ corresponding to a change of local coordinates on M around p.

Define the *cotangent bundle* T^*M . Construct a family of charts making T^*M into a manifold and a vector bundle over M.

Let a_i denote the coordinates on the cotangent spaces with respect to a basis dx_i , where x_i are local coordinates on M. Show that the 2-forms $\sum_{i=1}^n da_i \wedge dx_i$ are independent of the choice of local coordinates and are local expressions for some 2-form η which is welldefined on all of T^*M . Show that the manifold T^*M is always orientable.

[Basic results about orientation on manifolds may be assumed if accurately stated.]

$\mathbf{2}$

Define what is meant by a vector field on a manifold M and by the Lie bracket [X, Y] of vector fields X, Y on M. (If your definition of [X, Y] uses a choice of local coordinates, then you should show that the Lie bracket is independent of that choice.)

Let G be a Lie group; what does it mean to say that a vector field X on G is *left-invariant*? Show that the left-invariant vector fields on G form a vector space isomorphic to the tangent space $\mathfrak{g} = T_I G$ at the identity element and that the Lie bracket of two left-invariant vector fields is left-invariant.

Now let G = SO(n) be a special orthogonal group. Explain briefly how $\mathfrak{so}(n) = T_I SO(n)$ may be identified with the space of all skew-symmetric $n \times n$ real matrices. Show that the Lie bracket of left-invariant vector fields induces a Lie bracket on $\mathfrak{so}(n)$ given by $[B_1, B_2] = B_1 B_2 - B_2 B_1$.

[You may assume that SO(n) is an embedded submanifold of $GL(n, \mathbb{R})$.]

UNIVERSITY OF

3

Define a *covariant derivative* ∇ on a vector bundle $\pi : E \to M$. Explain what is meant by the covariant derivative ∇_A induced by a connection A on E. Prove that every covariant derivative on E is induced by some connection.

Let $\gamma: I \to M$ be an embedded curve (i.e. a 1-dimensional embedded submanifold), where $I \subset \mathbb{R}$ is an open interval and $[0,1] \subset I$. Define what is meant by a *horizontal lift* $\tilde{\gamma}$ of γ with respect to A. Show that for each $a_0 \in E$ with $\pi(a_0) = \gamma(0)$ there exists unique horizontal lift of γ satisfying $\tilde{\gamma}(0) = a_0$ and the assignment $\tilde{\gamma}(0) \mapsto \tilde{\gamma}(1)$ defines a linear isomorphism $E_{\gamma(0)} \to E_{\gamma(1)}$ between respective fibres of E. (You should state clearly any standard results you require about ordinary differential equations.)

Now suppose that E is endowed with an inner product $\langle \cdot, \cdot \rangle$ on the fibres (smoothly varying with the fibres), such that

$$X\langle s_1, s_2 \rangle = \langle \nabla_X^A s_1, s_2 \rangle + \langle s_1, \nabla_X^A s_2 \rangle, \tag{*}$$

for all vector fields X on M and all sections s_1, s_2 of E. Here $\nabla_X^A s$ denotes a section of E obtained by the bilinear pairing of the 1-form $\nabla^A s$ with a vector field X. Prove that then for all embedded curves $\gamma: I \to M$ the linear maps $E_{\gamma(0)} \to E_{\gamma(1)}$ defined above are isometries.

[You may assume that a smooth section of E or TM along γ can be extended to a smooth section over some open neighbourhood of $\gamma(I)$ in M.]

4

Let (M, g) be a Riemannian manifold. State the ordinary differential equations satisfied by geodesics on M in local coordinates, defining clearly all terms appearing in the equation. Define what is meant by the *exponential map* at $p \in M$ and prove that the exponential map induces well-defined local coordinates (the geodesic coordinates) on some neighbourhood of p.

Prove that the coefficients Γ_{jk}^i of the Levi–Civita connection D of g written in the geodesic coordinates at p vanish at p.

What is a *geodesic sphere* around p? State and prove Gauss' lemma.

[You may assume that solutions of the geodesic ODEs are parametrized with constant speed. Basic properties of symmetric connections on M may be used without proof if accurately stated.]

UNIVERSITY OF

 $\mathbf{5}$

Let (M, g) be an oriented Riemannian manifold. Define the inner product induced by g on the fibres of $\Lambda^p T^*M$. Define the *Hodge* * operator for M (you are not expected to define the volume form of g) and compute the square of * on differential p-forms.

Deduce from Stokes' theorem the expression for the formal (L^2) adjoint δ of the exterior derivative in terms of * and d. Define the *harmonic forms* on M and show that if M is compact then every harmonic form α satisfies $d\alpha = 0$ and $\delta \alpha = 0$.

Now let N be a 4-dimensional compact oriented Riemannian manifold. Show that every $\alpha \in \Omega^2(N)$ may be written as $\alpha = \alpha_+ + \alpha_-$, for some unique α_\pm satisfying $*\alpha_\pm = \pm \alpha$ (such α_\pm are called, respectively, self-dual and anti-self-dual 2-forms). Show that the expression $\int_N \alpha \wedge \beta$, for closed $\alpha, \beta \in \Omega^2(N)$, induces a non-degenerate symmetric bilinear form of signature $(b^+(N), b^-(N))$ on the de Rham cohomology $H^2_{dR}(N)$, where $b^{\pm}(N) = \dim \mathcal{H}^{\pm}(N)$ and $\mathcal{H}^{\pm}(N)$ is the space of harmonic (anti-)self-dual forms on N.

State the Hodge decomposition theorem. Show that every exact 3-form on N can be expressed as the exterior derivative of a self-dual 2-form.

[You may assume that every de Rham cohomology class on N is represented by a unique harmonic form.]

END OF PAPER