

MATHEMATICAL TRIPOS Part III

Thursday, 28 May, 2015 1:30 pm to 4:30 pm

PAPER 16

ALGEBRAIC GEOMETRY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let $\theta : R \to A$ be a homomorphism of commutative rings and M and N be A-modules; show that there is a natural map of R-modules (and indeed A-modules) $M \otimes_R N \to M \otimes_A N$.

Let $\phi : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of varieties, let \mathcal{F}, \mathcal{G} be arbitrary \mathcal{O}_X modules and let \mathcal{H} be an \mathcal{O}_Y -module. Describe in detail the constructions of

- (i) the \mathcal{O}_X -module $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$,
- (ii) the \mathcal{O}_Y -module $\phi_*\mathcal{F}$, and
- (iii) the \mathcal{O}_X -module $\phi^* \mathcal{H}$.

Exhibit a canonical morphism of \mathcal{O}_Y -modules $\mathcal{H} \to \phi_* \phi^* \mathcal{H}$, and interpret this in the case when $\mathcal{H} = \mathcal{O}_Y$.

By constructing a certain morphism of \mathcal{O}_Y -modules

$$\phi_*\mathcal{F}\otimes_{\mathcal{O}_Y}\phi_*\mathcal{G}\to\phi_*(\mathcal{F}\otimes_{\mathcal{O}_X}\mathcal{G})$$

for any \mathcal{O}_X -modules \mathcal{F} and \mathcal{G} , deduce the existence of a morphism of \mathcal{O}_Y -modules (for any \mathcal{O}_X -module \mathcal{F} and \mathcal{O}_Y -module \mathcal{H})

$$\phi_*\mathcal{F}\otimes_{\mathcal{O}_Y}\mathcal{H}\to\phi_*(\mathcal{F}\otimes_{\mathcal{O}_X}\phi^*\mathcal{H}),$$

which is an isomorphism whenever \mathcal{H} is locally free of finite rank.

[The construction of the sheafification of a presheaf, and its properties, may be assumed in this question. You should not however assume that the sheaves are quasicoherent.]

UNIVERSITY OF

 $\mathbf{2}$

Let (X, \mathcal{O}_X) denote an algebraic variety over an algebraically closed field k. We assume that the variety X has the property that $H^1(X, \mathcal{I}) = 0$ for all coherent sheaves of ideals $\mathcal{I} \subseteq \mathcal{O}_X$, and we let A denote the k-algebra $H^0(X, \mathcal{O}_X)$.

(a) If r > 0 and $\mathcal{F} \subset \mathcal{O}_X^r$ a coherent \mathcal{O}_X -submodule, prove, by induction on r or otherwise, that $H^1(X, \mathcal{F}) = 0$.

(b) If $P \in X$ has an open affine neighbourhood $U \ni P$ with $Y := X \setminus U$, prove that there exists $f \in A$ such that $Y \subseteq V(f) \subseteq X$, where $X_f := \{x \in X : f(x) \neq 0\}$ is affine and f(P) = 1.

(c) By repeated use of (b), we can find $f_1, \ldots, f_r \in A$ such that X_{f_i} is affine for each i and $X = \bigcup_{i=1}^r X_{f_i}$; prove that there exist $g_1, \ldots, g_r \in A$ such that $\sum_{i=1}^r g_i f_i = 1$. [Hint: Use result from (a).]

(d) Deduce from (c) that there exists a subring $B \subseteq A$, containing the f_i and g_i , such that B is a finitely generated k-algebra and $B_{f_i} = A_{f_i}$ for all i. For any N > 0, show that the ideal $\langle f_1^N, \ldots, f_r^N \rangle$ in B is the whole ring. Deduce further that A = B and hence A is a finitely generated (reduced) k-algebra.

(e) Let Y denote the affine variety with coordinate ring A. By defining a suitable isomorphism $\phi: X \to Y$, show that X is an affine variety.

If X now is an affine variety and $\mathcal{I} \subset \mathcal{O}_X$ a coherent sheaf of ideals, explain briefly why the converse to the above result holds, namely that $H^1(X, \mathcal{I}) = 0$.

If $X = \mathbf{P}^n \setminus Z$ where each component of the closed subvariety Z has codimension at least two; exhibit an explicit sheaf of ideals \mathcal{I} for which $H^1(X, \mathcal{I}) \neq 0$.

[Standard properties of sheaf cohomology may be assumed in this question.]

CAMBRIDGE

3

For \mathcal{F} a sheaf of abelian groups on a topological space X and $\mathcal{U} = \{U_1, \ldots, U_d\}$ an open cover of X, describe the construction of the Čech cohomology groups $\check{H}^i(\mathcal{U}, \mathcal{F})$ and prove that $\check{H}^0(\mathcal{U}, \mathcal{F}) \cong \mathcal{F}(X)$. If X is a variety and \mathcal{F} a quasi-coherent sheaf, state a condition on \mathcal{U} for $\check{H}^i(\mathcal{U}, \mathcal{F})$ to be isomorphic to the sheaf cohomology group $H^i(X, \mathcal{F})$ for all $i \ge 0$.

For a variety (X, \mathcal{O}_X) , consider the multiplicative sheaf of units \mathcal{O}_X^* in the structure sheaf. Show that the subgroup $\operatorname{Pic}(X)_{\mathcal{U}}$ of the Picard group $\operatorname{Pic}(X)$, consisting of isomorphism classes of invertible sheaves which are trivialized with respect to the open cover \mathcal{U} , is isomorphic to $\check{H}^1(\mathcal{U}, \mathcal{O}_X^*)$. [You may assume that the isomorphism class of an invertible sheaf is determined by giving its transition functions with respect to an open cover.]

Now let V be an irreducible variety and \mathcal{K}^* the (constant) multiplicative sheaf of non-zero rational functions — so $H^0(U, \mathcal{K}^*) = k(V)^*$ for any non-empty open set U. Prove that there is a natural map $k(V)^* \to H^0(V, \mathcal{K}^*/\mathcal{O}_V^*)$, whose cokernel is isomorphic to $\operatorname{Pic}(V)$. Quoting any results on sheaf cohomology that you may need, deduce that $\operatorname{Pic}(V) \cong H^1(V, \mathcal{O}_V^*)$.

Let $V \subset \mathbf{P}^3$ be an irreducible smooth quadric surface, whose curve at infinity C is a smooth conic, and let $U = V \setminus C$ be the corresponding smooth affine quadric surface; prove that $\operatorname{Pic}(U)$ is non-trivial.

CAMBRIDGE

 $\mathbf{4}$

For V an irreducible variety, describe the construction of the coherent \mathcal{O}_V -module of Kähler forms Ω_V^1 . For $P \in V$, define the Zariski tangent space $T_{V,P}$ and show that $T_{V,P}$ is the dual space of $\Omega_{V,P}^1/m_P\Omega_{V,P}^1$, where $\Omega_{V,P}^1$ denotes the stalk of Ω_V^1 at P and $m_P \subset \mathcal{O}_{V,P}$ is the maximal ideal of the local ring $\mathcal{O}_{V,P}$.

5

Define what is meant by $P \in V$ being a *smooth* point of V. Assuming the result that the smooth locus is open and dense, state and prove the *Jacobian criterion* (in terms of a matrix of partial derivatives evaluated at P) for a point on an affine variety $V \subseteq \mathbf{A}^N$ to be smooth. For V any irreducible smooth variety, show that Ω^1_V is a locally free \mathcal{O}_V -module of rank n, where $n = \dim V$.

Suppose $W \subseteq V$ are arbitrary irreducible varieties with W a non-empty closed subvariety of V, and let $\mathcal{I}_W \subset \mathcal{O}_V$ denote the corresponding sheaf of ideals. If $\iota : W \hookrightarrow V$ denotes the inclusion morphism, and \mathcal{M} an \mathcal{O}_V -module on V, let $\mathcal{M}|_W$ denote the \mathcal{O}_W module $\iota^*\mathcal{M}$. For \mathcal{M} a quasi-coherent \mathcal{O}_V -module, give (without proof) an explicit description of $\mathcal{M}|_W$ on affine pieces. Show that there is an exact sequence of sheaves on W

$$\mathcal{I}_W/\mathcal{I}_W^2 \to \Omega_V^1|_W \to \Omega_W^1 \to 0.$$

In the case when W is locally principal and not contained in the singular locus of V, show that the sheaf $\mathcal{I}_W/\mathcal{I}_W^2$ is an invertible \mathcal{O}_W -module and the morphism $\mathcal{I}_W/\mathcal{I}_W^2 \to \Omega_V^1|_W$ is injective.

[Standard results about quasi-coherent sheaves on affine varieties may be assumed in this question.]

END OF PAPER