

MATHEMATICAL TRIPOS Part III

Monday, 8 June, 2015 9:00 am to 11:00 am

PAPER 13

PROBABILISTIC COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(i) State two equivalent forms of the Lusternik–Shnirelman–Borsuk theorem.

(ii) For $n = 2k + d \ge 2k \ge 2$ define the Kneser graph KG(n, k). Deduce from (i) the theorem of Lovász that the chromatic number of KG(n, k) is d + 2.

(iii) Give an entirely combinatorial proof of the fact that $\chi(\mathrm{KG}(n,2)) = n-2$ for $n \ge 4$.

 $\mathbf{2}$

Let $X = (X_1, \ldots, X_n)$ be a sequence of random variables taking finitely many values. For $A \subset [n]$ set $X_A = (X_i)_{i \in A}$ and let $H(X_A)$ be the information theoretic entropy of X_A .

(i) Show that the map $\mathcal{P}(n) \to \mathbb{R}$, $A \mapsto H(X_A)$, is a submodular function on $\mathcal{P}(n)$.

(ii) Let \mathcal{A} and \mathcal{B} be finite multisets of subsets of [n] with $\mathcal{A} > \mathcal{B}$, i.e. with \mathcal{B} a compression of \mathcal{A} . Show that

$$\sum_{A \in \mathcal{A}} H(X_A) \ge \sum_{B \in \mathcal{B}} H(X_B).$$

(iii) Let \mathcal{F} be a family of graphs on [n] such that if $F, G \in \mathcal{F}$ then the graph $F \cap G$ has no isolated vertices. Show that

$$|\mathcal{F}| \leqslant 2^{n^2/2 - n}$$

3

Let $G_{n,1/2}$ be the random graph on [n] with edge probability 1/2. Prove the following assertions.

(i) Whp we have $\chi(G_{n,p}) \ge n/(2\log_2 n)$.

(ii) Let $X_r = X_r(G_{n,p})$ be the number of K_r subgraphs in $G_{n,1/2}$, and let r_0 be the maximal r such that

$$\mathbb{E}(X_r(G_{n,1/2})) \geqslant n^{9/5}.$$

Then $r_0 = (2 + o(1)) \log_2 n$.

(iii) Whp we have $\chi(G_{n,p}) = (1 + o(1))n/(2\log_2 n).$

State precisely the martingale inequalities you use.

CAMBRIDGE

 $\mathbf{4}$

The multiplicative energy E(A, B) of two non-trivial finite sets of positive reals, A and B, is the cardinality of the set

$$\{(a,b,c,d) \in A \times B \times A \times B : a/b = c/d\}.$$

Show that

$$E(A,B) \ge \frac{|A|^2 |B|^2}{|A \cdot B|}$$

and deduce that

$$\frac{|A|^2|B|^2}{4\lceil \log |B|\rceil} \leqslant |A \cdot B| |A + A| |B + B|.$$

END OF PAPER