MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2015 $\,$ 9:00 am to 11:00 am $\,$

PAPER 12

TECHNIQUES IN COMBINATORICS

There are SIX questions in total.

You may attempt any number of questions. Full marks can be gained from complete answers to **FOUR** questions.

 $The \ questions \ carry \ equal \ weight.$

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(i) State and prove Chebyshev's inequality.

(ii) Let $p: \mathbb{N} \to [0,1]$ be a function such that $np(n) \to \infty$ as $n \to \infty$. Prove that if G is a random graph with n vertices, where the edges are chosen independently, each with probability p(n), then the probability that G contains at least $2p(n)^3 \binom{n}{3}$ triangles tends to zero as n tends to infinity.

2 Let A be a subset of \mathbb{Z}_n of density α . Let $K = \{r : |\hat{A}(r)| \ge \theta\}$ and let B be the Bohr set $B(K; \epsilon) = \{x : \forall r \in K | 1 - \omega^{rx} | \le \epsilon\}$, where $\omega = \exp(2\pi i/n)$.

(i) Let f = A * A, let $u \in \mathbb{Z}_n$ and let g(x) = f(x - u) for every $x \in \mathbb{Z}_n$. Find expressions for the Fourier transforms of f and g in terms of \hat{A} .

(ii) Prove that $\|\hat{A}\|_4^4 \leq \alpha^3$.

(iii) Prove that if $u \in B$, then $\|f-g\|_2^2 \leq \epsilon^2 \alpha^3 + 4\theta^2 \alpha$.

3 State and prove Plünnecke's inequality.

4 Assuming Szemerédi's regularity lemma and any facts you like about quasirandom graphs, prove that for every $\delta > 0$ there exists n such that for every subset $A \subset [n]^2$ of size at least δn^2 there exist x, y, d such that $d \neq 0$ and the points (x, y), (x, y+d) and (x+d, y) all belong to A.

5 Prove that if $A \subset \mathbb{F}_p^n$ contains a line in every direction, then $|A| \ge p^n/n!$.

6 Let G be a bipartite graph with vertex sets X and Y, both of size n. Suppose that every vertex of G has degree δn and that the 4-cycle density of G is at most $\delta^4(1+c^4)$. Let $A \subset X$ and $B \subset Y$ be subsets of density α and β , respectively. Prove that the number of edges from A to B differs from $\delta|A||B|$ by at most $c\delta(\alpha\beta)^{1/2}n^2$. [If you wish to use facts about the 4-cycle norm, then you should prove them first.]

END OF PAPER