MATHEMATICAL TRIPOS Part III

Friday, 29 May, 2015 1:30 pm to 3:30 pm

PAPER 11

COMBINATORICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State and prove the LYM inequality.

Show that the *n*-cube $\mathbb{P}[n]$ can be partitioned into $\binom{n}{\lfloor n/2 \rfloor}$ symmetric chains.

 $\mathbf{2}$

Let $\mathcal{A}, \mathcal{B} \subset \mathcal{P}[n]$ be two antichains. Suppose that $A \cap B \neq \emptyset$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Show that $|\mathcal{A}| + |\mathcal{B}| \leq {n \choose \lfloor n/2 \rfloor}$, or give a counterexample.

 $\mathbf{2}$

State and prove the Kruskal-Katona theorem.

Let \mathcal{I} be an initial segment of colex order on $\mathbb{N}^{(r+1)}$. Show that, if $|\mathcal{I}| \geq \binom{m}{r+1} - m + r + 1$, then $[m]^{(r)} \subset \partial \mathcal{I}$.

Let $\mathcal{A} \subset \mathbb{P}[n]$ be such that $|A| \ge r$ for all $A \in \mathcal{A}$. Let $\mathcal{B} = \{Y \in [n]^{(r)} : Y \subset A$ for some $A \in \mathcal{A}\}$. Show that, if

$$|\mathcal{A}| > \sum_{j=r}^{m} {m \choose j} - {m-r \choose j-r}$$

for some integer m, then $|\mathcal{B}| \ge {m \choose r}$.

3

Let $\mathcal{A} \subset \mathcal{P}[n]$ be a 2-intersecting system. Show that

$$|\mathcal{A}| \leq \sum_{i=n/2+1}^{n} \binom{n}{i} \quad \text{if } n \text{ is even}$$
$$|\mathcal{A}| \leq \binom{n-1}{(n+1)/2} + \sum_{i=(n+3)/2}^{n} \binom{n}{i} \quad \text{if } n \text{ is odd}$$

and show that equality can be attained. (You may assume the Erdős-Ko-Rado theorem.)

Show that if $\mathcal{A} \subset [n]^{(r)}$ is *r*-uniform and 2-intersecting, then $|\mathcal{A}| \leq {r \choose 2} {n-2 \choose r-2}$.

Show that if $\mathcal{A} \subset [n]^{(r)}$ is *r*-uniform and intersecting, then there exists $x \in [n]$ such that at most $(r-1)^2 \binom{n-2}{r-2}$ sets in \mathcal{A} do not contain x.

UNIVERSITY OF

 $\mathbf{4}$

State and prove the Frankl-Wilson theorem, concerning set families whose intersection sizes are constrained modulo some prime.

Deduce, or prove directly, that if $\mathcal{A} \subset \mathcal{P}[n]$ and $|A \cap B| = \lambda$ for all distinct $A, B \in \mathcal{A}$, then $|\mathcal{A}| \leq n$, unless $\lambda = 0$ in which case $|\mathcal{A}| \leq n + 1$.

Let $t \ge 3$ and let A_1, \ldots, A_m be distinct subsets of [n] such that, for all sets $\{i_1, \ldots, i_t\} \in [m]^{(t)}$ of t distinct indices, $|A_{i_1} \cap \cdots \cap A_{i_t}| = \lambda$ holds. Show that either

- (a) there exists some $S \subset [n]$ with $|S| = \lambda$ and $S \subset A_i$ for every $i \in [m]$, or
- (b) $m \leq k+t-2$, where $k = \min\{|A_{i_1} \cap \dots \cap A_{i_{t-2}}| : \{i_1, \dots, i_{t-2}\} \in [m]^{(t-2)}\}.$

Show that the bound in case (b) cannot be improved in general.

END OF PAPER