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1

State and prove the LYM inequality.

Show that the n-cube P[n] can be partitioned into
(

n
⌊n/2⌋

)

symmetric chains.

Let A,B ⊂ P[n] be two antichains. Suppose that A ∩ B 6= ∅ for all A ∈ A and

B ∈ B. Show that |A|+ |B| 6
( n
⌊n/2⌋

)

, or give a counterexample.

2

State and prove the Kruskal-Katona theorem.

Let I be an initial segment of colex order on N
(r+1). Show that, if |I| >

( m
r+1

)

−m+ r + 1, then [m](r) ⊂ ∂I.

Let A ⊂ P[n] be such that |A| > r for all A ∈ A. Let B = {Y ∈ [n](r) : Y ⊂

A for some A ∈ A}. Show that, if

|A| >
m
∑

j=r

(

m

j

)

−

(

m− r

j − r

)

for some integer m, then |B| >
(m
r

)

.

3

Let A ⊂ P[n] be a 2-intersecting system. Show that

|A| 6
n
∑

i=n/2+1

(

n

i

)

if n is even

|A| 6

(

n− 1

(n+ 1)/2

)

+

n
∑

i=(n+3)/2

(

n

i

)

if n is odd ,

and show that equality can be attained. (You may assume the Erdős-Ko-Rado theorem.)

Show that if A ⊂ [n](r) is r-uniform and 2-intersecting, then |A| 6
(

r
2

)(

n−2
r−2

)

.

Show that if A ⊂ [n](r) is r-uniform and intersecting, then there exists x ∈ [n] such

that at most (r − 1)2
(n−2
r−2

)

sets in A do not contain x.
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4

State and prove the Frankl-Wilson theorem, concerning set families whose intersec-

tion sizes are constrained modulo some prime.

Deduce, or prove directly, that if A ⊂ P[n] and |A∩B| = λ for all distinct A,B ∈ A,

then |A| 6 n, unless λ = 0 in which case |A| 6 n+ 1.

Let t > 3 and let A1, . . . , Am be distinct subsets of [n] such that, for all sets

{i1, . . . , it} ∈ [m](t) of t distinct indices, |Ai1 ∩ · · · ∩Ait | = λ holds. Show that either

(a) there exists some S ⊂ [n] with |S| = λ and S ⊂ Ai for every i ∈ [m], or

(b) m 6 k + t− 2, where k = min{|Ai1 ∩ · · · ∩Ait−2
| : {i1, . . . , it−2} ∈ [m](t−2)}.

Show that the bound in case (b) cannot be improved in general.
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