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1

Define what it means for a ring R to be Noetherian.

Let R be a Noetherian ring and let f be a ring homomorphism from R to R. Show
that if f is surjective than it is also injective.

Define the nilradical N(R) of a ring R. Show that it is equal to the intersection
of all the prime ideals of R, and, if R is Noetherian, that it is the intersection of finitely
many prime ideals.

Show, for any ring R, that N(R) = 0 if and only if N(R[[X]]) = 0.

Give an example of a ring whose nilradical is not nilpotent.

2

(i) What does it mean for an ideal of a ring R to be prime?

Let P1, P2 and P3 be prime ideals of R with Pi 6 Pj only if i = j. Show that their
union U is not an ideal.

Give an example to show that if the ideals Pi are not necessarily prime then their
union may be an ideal.

(ii) What does it mean for a subset S of R to be multiplicatively closed?

Let S be a multiplicatively closed subset of R. Show that the set of prime ideals of
the localisation S−1R corresponds bijectively to the set of prime ideals of R disjoint to S.

(iii) A multiplicatively closed subset S is said to be saturated if xy ∈ S only if both
x ∈ S and y ∈ S. Show that a multiplicatively closed subset of R is saturated if and only
if its complement in R is a union of prime ideals.

Give an example of a ring R and a saturated multiplicatively closed subset S of R
whose complement in R is not a union of finitely many prime ideals.

3

(i) What does it mean for a ring T to be integral over a subring R?

Suppose T is integral over R. Let P be a prime ideal of R. Show that there is a
prime ideal Q of T with Q ∩R = P .

(ii) Let k be a field and let I be an ideal of the Laurent polynomial algebra
A = k[X1,X

−1

1
,X2,X

−1

2
,X3,X

−1

3
]. Let T = A/I. Show that if T is not finite dimensional

as a k-vector space then it is integral over some subring isomorphic to a Laurent polynomial
algebra k[Y1, Y

−1

1
, . . . , Ym, Y −1

m ] for some m with 1 6 m 6 3.
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4

Define what is meant by the height of a prime ideal P of a Noetherian ring R.

Let I be a proper ideal generated by n elements. Show that for each minimal prime
P over I the height of P is at most n.

5

What does it mean for a ring R to be local?

Define dim(R) and d(R) for a Noetherian local ring R and show that dim(R) 6 d(R).

What does it mean for a Noetherian local ring to be regular?

Show that if R is a regular Noetherian local ring then it is an integral domain.

6

Let k be a field. Define the ring of differential operators of a commutative k-algebra
R. Define the set Der(R) of derivations of R.

What is meant by the order of a differential operator?

Show that the set of differential operators of order at most 1 is equal to R+Der(R).

Define the nth complex Weyl algebra An and show that every non-zero An-module
has infinite dimension as a complex vector space.

Define d(M) for a non-zero finitely generated An-module M , and show that d(M)
is at least n.
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