

MATHEMATICAL TRIPOS Part III

Thursday, 29 May, 2014 9:00 am to 11:00 am

PAPER 9

RAMSEY THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

(i) Show that, whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < \ldots$ such that the set $\{x_i + 2x_j : i < j\}$ is monochromatic.

 $\mathbf{2}$

(ii) Show that it is *not* true that, whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < \ldots$ such that the set

$$\{x_i + 2x_j : i < j\} \cup \{x_i + x_j : i < j\}$$

is monochromatic.

(iii) Show that, whenever \mathbb{N} is finitely coloured, there exist $x_1 < x_2 < \ldots$ and $y_1 < y_2 < \ldots$ such that the set

$$\{x_i + 2x_j : i < j\} \cup \{y_i + y_j : i < j\}$$

is monochromatic.

[*Hint: Find a sequence* $u_1 < u_2 < \ldots$ such that the set

$$\{u_i + u_j + 2u_k + 2u_l : i < j < k < l\}$$

is monochromatic, and then construct the x_i and the y_i from this sequence.]

$\mathbf{2}$

State and prove Rado's theorem.

[You may assume that, for any m, p, c, whenever \mathbb{N} is finitely coloured there is a monochromatic (m, p, c)-set.]

By considering the system of equations 3x + y = 3z, x - 2y = rw (in variables x, y, z, w), for a suitable rational number r, show that, whenever \mathbb{N} is finitely coloured, there exist monochromatic x, y, z with 3x + y = 3z and 2y < x.

UNIVERSITY OF

3

What is an *ultrafilter* on \mathbb{N} ? Show that there exists a non-principal ultrafilter on \mathbb{N} . Define the topological space $\beta \mathbb{N}$, and prove that it is compact and Hausdorff.

State Hindman's theorem, and show how to deduce it from the existence of an idempotent for + on $\beta \mathbb{N}$. (You are not required to prove that an idempotent exists. You may assume simple properties of ultrafilters, their quantifiers, and the operation + on $\beta \mathbb{N}$.)

For a filter \mathcal{F} on \mathbb{N} , and a statement p, we write $\forall_{\mathcal{F}} x \ p(x)$ to mean that

$$\{x \in \mathbb{N} : p(x)\} \in \mathcal{F}$$
.

Which of the following are always true and which can be false (for statements p and q and filters \mathcal{F} and \mathcal{G})?

(i) $\forall_{\mathcal{F}} x \ (p(x) \text{ and } q(x))$ if and only if $(\forall_{\mathcal{F}} x \ p(x) \text{ and } \forall_{\mathcal{F}} x \ q(x))$

(ii) $\forall_{\mathcal{F}} x \ (p(x) \text{ or } q(x))$ if and only if $(\forall_{\mathcal{F}} x \ p(x) \text{ or } \forall_{\mathcal{F}} x \ q(x))$

(iii) $(\forall_{\mathcal{F}} x \ p(x))$ is false if and only if $\forall_{\mathcal{F}} x \ (\text{not } p(x))$

(iv) If we define $\mathcal{F} + \mathcal{G}$ to be the collection of all $A \subset \mathbb{N}$ such that $\forall_{\mathcal{F}} x \; \forall_{\mathcal{G}} y \; (x+y \in A)$, then $\mathcal{F} + \mathcal{G}$ is a filter.

$\mathbf{4}$

What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is *Ramsey*? Give an example of a non-Ramsey set. Prove that every *-open set is Ramsey.

[Any results quoted from the course must be proved.]

Give an example of a τ -Baire set that is not Ramsey.

END OF PAPER