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1

(i) State and prove Roth’s theorem for arithmetic progressions of length 3.

(ii) Let θ be a positive real number. Explain briefly how to generalize Roth’s
theorem to a statement about subsets A ⊂ Z for which there are at least θ|A|3 quadruples
(a, b, c, d) ∈ A4 with a+ b = c+ d.

2

Proving any results you need along the way, show that there exists a constant C

such that for every real number α and every ǫ > 0 there exists a positive integer n 6 ǫ−C

such that ‖αn2‖ < ǫ. [Here ‖x‖ denotes the distance from x to the nearest integer.]

3

Let A ⊂ Z be a set of size n, let θ > 0, and suppose that there are at least θn3

quadruples (a, b, c, d) ∈ A4 such that a + b = c + d. Prove that 2A − 2A contains an
arithmetic progression of length at least nγ , where γ is a positive constant that depends
on θ only. [Basic facts about Freiman homomorphisms may be assumed, but other results

that you use should be proved.]

4

Give in outline a proof of Szemerédi’s theorem for progressions of length 4. [Your
main priority should be to make clear the global structure of the proof. However, you should

include proofs of at least some of the steps you judge to be important. For the purposes of

this question, results connected with Freiman’s theorem should be regarded as background

knowledge.]
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