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1

Calculate the effective permeability in the x direction of a two dimensional porous
rock of thickness 0 < y < H and length 0 < x < L(>> H) which is composed of two layers
of rock, of thickess y = Hx/L and permeability k1 and y = H(1− x/L) and permeability
k2, and which is bounded above and below, at y = 0 and y = H by impermeable rock.

Find the travel time τ(y) of a parcel of fluid travelling from x = 0 to x = L released
from the point (0, y) at t = 0 and show that the maximum difference in travel time between
two parcels of fluid released from x = 0 is

∆τ =
φHL

2Q

[

k2
1
− k2

2
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]

.

[You may assume there is a steady flow through the formation with total (two dimensional)
flux Q in the x-direction, and that the formation has uniform porosity φ.]

Comment on the implications of this model for the recovery of oil by injection of
water from a layered permeable rock in which different layers have permeabilities ranging
by a factor of 10.

2

Find the velocity potential and the streamfunction for a flow in a two dimensional
porous medium produced by a uniform flow U in the x-direction combined with a flow
from a source of strength Q at the origin. Find the maximum distance upstream (i.e. in
the region x < 0) travelled by the fluid from the source, and show that far downstream
the source fluid is confined within the region −b < y < b where b = Q/2U .

Show that fluid issuing from the source at time t first reaches the point x(> 0) at a
time τ given by

τ =
b

πU
ln

(πx

b
+ 1

)

earlier than fluid far from the source, y >> b, which passes the line x = 0 at time t = 0.

Part III, Paper 78



3

3

Fluid migrates in the x direction through a porous layer which lies in the region
0 < y < H, 0 < x < L, L >> H, and which has permeability k = koy/H. If a pressure
gradient is applied in the x direction which produces a mean flow speed U , find the
equation which describes the evolution of average concentration of contaminant

c =
1

H

∫

H

0

cdy

in a pulse of contaminated fluid as it propagates along the layer, in the limit that
P = H2U/DTL << 1. [You may assume the pore scale (transverse and longitudinal)
dispersion in the porous medium is given by the constant values DT and DL.] What is
the physical interpretation of the condition P?

Find an expression for the average concentration in the porous layer, c in the case
that the contaminant is supplied from a source at x = 0 with concentration c = 1 for
t > 0, while the region x > 0 is initially uncontaminated.

4

A wetting fluid of saturation s migrates through a porous layer initially with a non-
wetting fluid of saturation 1 − so, and viscosity µnw and a residual saturation so of the
wetting fluid of viscosity µw. If the relative permeabilities of the wetting and non-wetting
fluids are kw and knw and the capillary pressure is pc(s), find an equation for the evolution
of the saturation of the wetting fluid, s(x, t), in the case that the wetting fluid is injected
into the porous medium at x = 0 with constant flux Q per unit area in the x direction.

Explain why in general the saturation is expected to develop a shock front when
the capillary pressure is small, and show the shock speed is given by

dF

ds
=

F (ss)− F (so)

ss − so

where ss is the saturation upstream of the shock and F is the fractional flow of the wetting
phase. Explain what effect the capillary pressure has on the shock.

In the case F = 2 − 1/s for s > s0 > 0, explain how the saturation evolves in time
as wetting fluid is injected to displace the non-wetting fluid.
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5

Relatively cold CO2 is injected into a porous layer filled with water, and which
has a sloping upper boundary at an angle θ to the horizontal. The CO2 is driven by
the density difference between the CO2 and water, and is modified by the temperature
difference between the CO2 and the reservoir. The CO2 has viscosity

µ = µo − λ(T − Tr)

and density
ρ = ρw −∆ρ− α(T − Tr)

where Tr is the reservoir temperature. If the CO2 is injected with a mass flux Q per unit
length of a line well arranged across the slope, and has initial temperature Tr −∆T , such
that ∆ρ > α∆T , find the depth of the steady current as it propagates upslope both near
source, where the current has temperature Tr − ∆T , and in the distal region where the
current has adjusted to the reservoir temperature. [You may assume that the thermal
front migrates as a local region of adjustment with speed Γu where u is the Darcy speed
of the cold injected current. You may neglect cross-current conduction of heat.]

If the current is able to leak through the overlying cap rock when the overpressure
of the current is ∆p find the critical values of the injection rate so that (i) there is leakage
from the cold region of the current only; (ii) there is leakage from all the current.

Describe in qualitative terms how the cross-current conduction of heat changes these
dynamics.

6

A semi-infinite porous medium of porosity φ and permeability k is brought in contact
with a reservoir of water through an inlet of radius Rs. The water wets the porous medium
and hence capillary forces drive imbibition into the porous matrix. Neglecting the early
time inertia of the fluid, consider the axisymmetric spreading of the hemispherical front of
radius R(t) assuming a fixed capillary pressure at the advancing front pc and a constant
inlet pressure p(Rs) = p0.

Using mass conservation and Darcy’s law within the porous medium, find the radial
extent of the front R(t) and hence the flux Q(t) as implicit functions of time. Compare the
asymptotic behaviour for R(t) andQ(t) to one-dimensional (i.e. purely vertical) imbibition.

Finally, find the steady-state radius in the case where a constant evaporative loss
per unit area of the interface Fe balances the imbibition flux through the porous medium.
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