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Consider a straight, rigid rod of length L moving in a Newtonian fluid of dynamic
viscosity µ. Due to time-varying external forces and moments, the rod is made to oscillate
in position and orientation around the configuration where the rod is aligned with the
y direction and its centre is located at the origin. The viscous forces acting on the rod
are fully characterized by two resistive drag coefficients, c⊥ and c‖. The rod oscillates its
centre along the x direction as x(t) = ǫa cos(ωt), where a has units of length and ǫ is a
dimensionless parameter. It also oscillates its orientation in the (x, y) plane with an angle
θ = ǫ cos(ωt+ φ) about the y direction, where φ is a constant.

(a) Using symmetry arguments, show that the time-averaged force induced by the rod
on the fluid in the x direction is zero. Why can the same arguments not be used to
rule out a force in the y direction?

(b) Assuming that ǫ ≪ 1, calculate the time-averaged force induced by the rod on the
fluid in the y direction at leading order in ǫ.

(c) Which value of the phase φ leads to the maximum force in the y direction? Use a
physical argument to rationalize your result. Why is there no force when φ = 0 or
π?

(d) Compute the time-averaged rate of working of the rod against the fluid at leading
order in ǫ. Show in particular that the work associated with the rotational
component of the rod’s motion is of the same order as the work associated with
its translation.

(e) If, instead, the rod is located in a linear viscoelastic fluid, resistive-force theory is
modified in the following manner: the hydrodynamic force per unit length acting
on the rod follows a Maxwell-like relationship

(

1 + λ
∂

∂t

)

δf = −
[

c‖tt+ c⊥(1− tt)
]

· u,

where λ is the relaxation time, t the tangent to the rod centreline, and u the velocity
of the rod relative to the fluid. Assuming ǫ to be small, show that the averaged
force in the y direction in the same as in the Newtonian case, but that the rate of
working is always smaller. Interpret this result physically.

Part III, Paper 77



3

2

Many organisms travel through fluid with a suspended solid matrix, for example
bacteria in soil or inside biological tissues. The fluid dynamics inside such complex
biological media is well described by a modified Stokes equation, where the pressure p
and velocity fields u satisfy

−∇p+ µ∇2u = µα2u, ∇ · u = 0,

with α is a positive constant. As a model for a swimmer, consider Taylor’s two-dimensional
swimming sheet. A two-dimensional, infinite, periodic swimmer deforms its shape as the
travelling wave

xS = x, yS = b sin(kx− ωt),

where k, ω are positive constants, and swims with velocity −Uex, with U > 0. We solve
the problem in the frame of the sheet so that the flow at infinity is +Uex. We further
assume that the amplitude of the wave is much less than its wavelength, i.e. if we write
ǫ = bk we consider the limit ǫ ≪ 1.

(a) What are the dimensions of α?

(b) Obtain the nondimensional governing equations and boundary conditions using ω−1,
k−1, and µω as the characteristic time, length, and pressure scales.

(c) Writing u = (∂yψ,−∂xψ), derive the partial differential equation satisfied by the
streamfunction ψ. What are the boundary conditions for ψ?

(d) Find the solution for the flow at first order in ǫ.

(e) Calculate the swimming speed U of the sheet at order ǫ2. Does the sheet go faster
or slower than in a simple Newtonian fluid? Find a simple physical argument why
this would be expected in a complex medium with a background matrix.

(f) Assuming that the stress tensor remains given by σ = −p1 + 2µe, compute the
mean rate of working of the sheet against the fluid. How does it compare with the
Newtonian case?
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The leading-order far-field flow induced by a swimming cell such as a bacterium is
well described by a stresslet,

u =
S

8πµ

[

−
(e · d)

r3
+ 3

(d · r)(e · r)

r5

]

r,

where S is a constant, r is measured from the swimming cell, and d and e are unit vectors.
We further assume in what follows that d = e for each swimming cell.

(a) Explain physically what a stresslet is and how it is derived from the fundamental
solution of Stokes flow (the Stokeslet).

(b) If S > 0 show that two identical stresslets separated by a vector ℓe repel each other.
Given an initial separation ℓ0, compute the solution for ℓ(t).

(c) Consider stresslet swimming parallel to and below a free planar surface. The vector
e is thus in the plane of the surface. Explain briefly what the hydrodynamic image
system is for the stresslet in this case, and how it affects the swimming trajectory
of the stresslet. Show that the stresslet touches the surface in finite time due to
hydrodynamic effects.

(d) Consider now two identical stresslets swimming parallel to a free planar surface,
separated by a vector ℓe, and both located a distance h below the free surface.
Show that when h ≪ ℓ the time-evolution of h is unchanged but ℓ increases more
rapidly than in (b).

(e) The rotlet singularity corresponds to a flow field

u =
1

8πµ

R× r

r3
·

Interpret this solution physically and explain why R = 0 for a cell (ignore the effects
of gravity).

(f) In addition to the stresslet, the far-field flow created by a flagellated bacterium such
as E. coli includes a rotlet-dipole, denoted uRD, obtained by taking the derivative
of a rotlet along the e direction. Explain the physical origin of this rotlet-dipole.
How are the orientations of R and e related? Calculate the solution for uRD.

(g) Consider now the cell swimming parallel to, and below, a free surface at z = 0.
Let ez denote the normal to the surface and z = −h be the location of the
rotlet-dipole. Show using symmetry arguments that the rotlet-dipole, on its own,
cannot lead to hydrodynamic attraction/repulsion by the surface. Show that the
image of the rotlet-dipole leads to a flow with a non-zero z-component of vorticity,
ωz = ∂xuy − ∂yux, at the location of the cell. How will this vorticity impact the
trajectory of the swimming cell?
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Consider an infinite, periodic flagellum swimming as the result of a travelling-wave
deformation of its inextensible shape. In the wave frame, the shape of the waveform is
prescribed by the functions (x(s), y(s)) where x(s+Λ) = x(s) + λ, y(s+Λ) = y(s) and s
is the arclength along the flagellum. If V is the speed of the travelling wave relative to the
flagellum, and assuming that the hydrodynamics are governed by resistive-force theory,
show that the flagellum swims at speed U in the direction opposite to the wave with

U

V
=

(1− ρ)(1 − β)

1 + β(ρ− 1)
,

where ρ is a ratio of drag coefficients and β is a geometrical integral of the flagellum’s
shape which you should derive.
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