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1

For this question, take the equations of mass and momentum conservation to be

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0. (1)

∂

∂t
(ρui) +

∂

∂xj

(

ρuiuj + (p+ χ)δij − σij

)

= 0, (2)

where σij is the viscous stress tensor and −∇χ is a potential body force. For part (b),
ignoring viscous dissipation and thermal conduction, the energy equation may be taken as

∂p

∂t
+ uj

∂p

∂xj
= c2

(

∂ρ

∂t
+ uj

∂ρ

∂xj

)

, where c2 =
∂p

∂ρ

∣

∣

∣

∣

s

. (3)

For a perfect gas with ratio of specific heats γ = cp/cv,

c2 =
γp

ρ
= (γ − 1)cpT.

(a) Explain what is meant by an acoustic analogy. Let ρ̂0(x) and ĉ20(x) be arbitrary
functions of position with no time dependence, and let p̂0 = P − χ with P an
arbitrary constant. Using only conservation of mass (1) and momentum (2), derive
the acoustic analogy

1

ĉ2
0

∂2

∂t2
(p− p̂0)−∇2(p− p̂0) =

∂2Wij

∂xixj
+
∂2Q

∂t2
, (4)

where

Wij = ρuiuj − σij , and Q =
1

ĉ2
0

(p− p̂0)− (ρ− ρ̂0).

Explain how the arbitrary functions ĉ20 and ρ̂0 might sensibly be chosen when
attempting to predict the sound generated by a region of flow surrounded by
stationary fluid.

(b) Now consider small perturbations
(

u
′(x, t), p′(x, t), ρ′(x, t)

)

to a static fluid
(

0, p0(x), ρ0(x)
)

,
and neglect viscosity and thermal diffusivity. Show that the static fluid satisfies the
governing equations (1–3) provided ∇(p0 +χ) = 0. Neglecting quantities quadratic
or smaller in the small perturbation, derive from the governing equations (1–3) the
“wave” equation

1

c2
0

∂2p′

∂t2
−∇2p′ =

1

c2
0
ρ0

∇p0 ·∇p′ − 1

ρ0
∇ρ0 ·∇p′,

and hence show that, for a perfect gas,

1

c2
0

∂2p′

∂t2
− ρ0

p
1/γ
0

∇·
(

p
1/γ
0

ρ0
∇p′

)

= 0. (5)

By comparing (5) and (4) without performing further calculations, briefly justify
why the ∂2Q/∂t2 term in (4) cannot be interpreted unambiguously as a noise source.
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(c) The Greens’ function G(x, t; y, τ) for (5) satisfies

1

c2
0

∂2G

∂t2
− ρ0

p
1/γ
0

∇·
(

p
1/γ
0

ρ0
∇G

)

= δ(x− y)δ(t − τ).

Assuming suitable boundary conditions, show that G satisfies the reciprocity
condition

G(y1, t; y2, τ2) = G(y2, t+ τ1 − τ2; y1, τ1)

[

p0(y2)
]1/γ

ρ0(y1)
[

p0(y1)
]1/γ

ρ0(y2)
.

[Hint: Fourier transform in time and then consider ∇· (fG1∇G2 − fG2∇G1) with
suitably chosen functions G1, G2 and f .]

2

A semi-infinite 2D waveguide is formed from two rigid plates located at y = ±b for
x > 0. An incident plane wave propagates in the negative x direction inside the waveguide,
with density perturbation

ρinc = exp{iωt+ ik0x}H(b− |y|),

where H is the Heaviside step function and k0 = ω/c0 with c0 the speed of sound. By
writing ρ = ρinc + φ and noting the symmetry in the y-direction, show that the Wiener–
Hopf equation for this situation is

1

L(k)

∂Φ−

∂y

∣

∣

∣

∣

y=b

+
[

Φ+
]b+

b−
=

i

k + k0
,

where L(k) = γ sinh(γb)e−γb, γ(k) =
√

k2 − k2
0
, and Φ = Φ+ + Φ− is the x-Fourier

transform of φ. How should the branch cuts of γ(k) be taken?

Solve this Wiener–Hopf equation by assuming the appropriate entire function
E(k) ≡ 0 to find, for |y| < b,

Φ =
iL+(−k0)L−(k) cosh(γy)

(k + k0)γ sinh(γb)
.

What is Φ for |y| > b?

By noting that Φ is an even function of γ for |y| < b, deduce that the branch cut
in Φ in the lower half plane is removable for |y| < b. By considering the inverse Fourier
transform and deforming the contour of integration into the lower half k-plane, show
that φ within the waveguide (x > 0 and |y| < b) is given as a sum of waveguide modes
propagating in the positive x direction, and find the amplitude of the plane wave mode.
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3

Burgers’ equation is
∂f

∂Z
− f

∂f

∂θ
= α

∂2f

∂θ2
.

The inviscid Burgers’ equation is obtained by setting α = 0.

(a) Show that the inviscid Burgers’ equation with initial conditions f(0, θ) = f0(θ) has
solution f(Z, θ0 − f0(θ0)Z) = f0(θ0). Show also that if there is a weak shock at
θs(Z) then

dθs
dZ

= −1

2

[

f(Z, θs+) + f(Z, θs−)
]

.

Solve the inviscid Burgers’ equation with initial conditions representing a periodic
backward-sawtooth wave f0(θ), given by

f0(θ + 2) = f0(θ) and f0(θ) = θ for − 1 < θ < 1,

being careful to distinguish between 0 < Z < 1 and Z > 1. Sketch f(Z, θ) for
Z = 1/3 and Z = 3.

[Hint: it may help to sketch the characteristics first; when doing so, think of f0(θ)
as being continuous but very steep at, for example, θ = ±1.]

(b) For α 6= 0, show that the Cole–Hopf transformation

f = 2α
∂

∂θ
logψ

can be used to solve Burgers’ equation when ψ satisfies a diffusion equation. Given
that the general solution to the diffusion equation is

ψ(Z, θ) =
1√

4παZ

∫

∞

−∞

ψ(0, φ) exp

{

−(φ− θ)2

4αZ

}

dφ,

show that the solution to the full Burgers’ equation with initial conditions given by
an N-wave,

f0(θ) =

{

−Uθ |θ| < L
0 |θ| > L

may be written as f(Z, θ) = 2α ∂
∂θ logψ, with

ψ(Z, θ) =
(

1− Iα(θ, L, Z)
)

+ Iα
(

θ, L(1 + UZ), Z(1 + UZ)
)

ψ̂(Z, θ)

where

Iα(θ, b, w) =
1√

4παw

∫ b

−b
exp

{

−(φ− θ)2

4αw

}

dφ,

and

ψ̂ =
1√

1 + UZ
exp

{

U

4α

(

L2 − θ2

1 + UZ

)}

.

Now consider the limit α → 0. In this limit, show that Iα(θ, L,w) ≈ H(L2 − θ2),
where H is the Heaviside step function. Hence, in this limit, show that f(Z, θ) ≈ 0
for |θ| ≫ L(1 + UZ), and find an approximation for f(Z, θ) when |θ| ≪ L.
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