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(a) In the limit ε → 0 find the leading-order approximations for the roots of the equation

ελ3 + λ2 + 2λ+ ε = 0 .

Distinguish between regular and singular roots.

Use your results to obtain an asymptotic solution to the problem

εy′′′ + y′′ + 2y′ + εy = 0 , x > 0 ,

with
y(0) = y′(0) = 0 and y′′(0) = 1 .

Estimate the error in the result for y(x) and sketch y(x).

(b) The Bessel function Jn(x) is defined for real x and integer n > 0 as

Jn(x) =
1

π

∫ π

0

cos(x sin θ − nθ)dθ .

Find leading-order asymptotic expressions for

(i) Jn(x) for x → +∞ and n fixed.

(ii) Jn(n sec α) for n → ∞ and α fixed (α > 0).

(iii) Jn(n) for n → ∞.

Standard results may be stated without proof. Recall that

Γ(z) =

∫

∞

0

tz−1e−tdt .
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(a) A weakly perturbed harmonic oscillator satisfies the equation

d2y

dt2
+ y = εf

(

y,
dy

dt

)

.

In the limit ε → 0, use the method of multiple scales to find equations for the slow
evolution of the amplitude R and phase θ of the oscillations in terms of averages
〈f cos(t+ θ)〉 and 〈f sin(t+ θ)〉 to be specified.

(i) What further may be deduced if f depends only on y? Find R and θ explicitly
in the case

f = y3 .

(ii) What further may be deduced if f depends only on dy/dt? Find R and θ
explicitly in the case

f =

(

dy

dt

)3

.

Recall that cos4 α = 1

8
cos 4α + 1

2
cos 2α+ 3

8
.

(b) If m → 1 with m < 1 find a leading-order asymptotic approximation for the elliptic
function

K(m) =

∫ π

2

0

dθ

(1−m sin2 θ)1/2
.

What is the order of the next term?
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(a) The function y(x) satisfies the differential equation

(1 + ε)x2y′ = (1− ε)ε xy2 − (1 + ε)ε x + ε y3 + 2ε2 y2 in 0 6 x 6 1 ,

where 0 < ε ≪ 1. If y(1) = 1, calculate three terms of the outer solution of y. Locate
the non-uniformity of the asymptoticness, and hence the rescaling for an inner region.
Thence find two terms for the inner solution.

[Hint: The general solution to

ξ2g′ −
(

3ξ

2 + ξ

)

g = −
(

ξ

2 + ξ

)
3

2

is

g(ξ) =
(1 + kξ)ξ

1

2

(2 + ξ)
3

2

,

for some constant k.]

(b) Using matched asymptotic expansions find the value of z′(0) to leading order if
z(1) = e−1 and z(x) satisfies the equation

(x− εz)z′ + xz = e−x .
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The classical unsteady boundary-layer equations are

ūt + ūūx + v̄ūy = Ut + UUx + ūyy , ūx + v̄y = 0 ,

where x, y are Cartesian co-ordinates, t is time, ū ≡ ū(x, y, t) and v̄ ≡ v̄(x, y, t) are velocity
components, and U(x, t) is the ‘slip’ velocity. Appropriate boundary conditions are

ū = v̄ = 0 on y = 0 , and ū → U(x, t) as y → ∞ .

Consider the linear instability of a solution (ū, v̄) = (U, V ) of the boundary-layer equations
by writing

(ū, v̄) = (U, V ) + δ(ũ, ṽ) ,

where 0 < δ ≪ 1. Find the linear equations that (ũ, ṽ) satisfy, and state appropriate
boundary conditions for (ũ, ṽ).

On the basis of the simplifying assumption U ≡ U(y), V = 0, explain why it is
possible to seek a normal mode solution of the form

(ũ, ṽ) = (u(y), v(y)) exp(iα(x − ct)) .

Derive a governing equation and boundary conditions for v. Explain why, if c is the eigen-
value for wavenumber α, the complex conjugate c∗ is the eigenvalue for wavenumber −α.
Henceforth take α > 0.

Suppose that the unperturbed velocity profile U , in addition to satisfying the no-slip
condition U(0) = 0 and the free-stream condition U → U as y → ∞, has a point of zero
shear at y = yc > 0, i.e. Uy(yc) = 0. In particular, assume that for |y−yc| ≪ 1 the velocity
profile expands as

U = U(yc) +
1

2
(y − yc)

2 + . . . .

Next, assume that the wavenumber is real and large in magnitude, i.e.

α =
k

ε
where 0 < ε ≪ 1 ,

and seek an asymptotic solution for v by expanding v and c as

(v, c) = (v0, c0) + ε
1

2 (v1, c1) + . . . .

Discuss the validity of the leading-order outer solution

v0 =

{

U − c0 for y > yc

0 for y < yc
,

where you should make an appropriate choice for c0.

Explain why a ‘critical layer’ exists close to y = yc, and derive appropriate inner
scalings

y − yc = εpY , v = εqw(Y ) + . . . ,
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where p and q are to be determined. Show that

kY w − k(1
2
Y 2 − c1)wY = iwY Y Y .

Having found a solution for v1, give matching conditions for w.

Find a transformation of variables (Y, c1, w) → (z, C,W ) that reduces the eigenvalue
problem to

Wzzz − (1
2
z2 − C)Wz + zW = 0 ,

W → ±(1
2
z2 − C) as z → ±∞ .

Given that the eigenvalues are

C =
4n+ 7√

2
for n = −2,−1, 1, 2, . . . ,

comment on the stability of the flow.

END OF PAPER

Part III, Paper 74


