MATHEMATICAL TRIPOS Part III

Monday, 2 June, 2014 1:30 pm to 4:30 pm

PAPER 74

PERTURBATION AND STABILITY METHODS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

(a) In the limit $\varepsilon \to 0$ find the leading-order approximations for the roots of the equation

 $\mathbf{2}$

 $\varepsilon \lambda^3 + \lambda^2 + 2\lambda + \varepsilon = 0 \,.$

Distinguish between regular and singular roots.

Use your results to obtain an asymptotic solution to the problem

$$\varepsilon y''' + y'' + 2y' + \varepsilon y = 0, \quad x \ge 0,$$

with

$$y(0) = y'(0) = 0$$
 and $y''(0) = 1$.

Estimate the error in the result for y(x) and sketch y(x).

(b) The Bessel function $J_n(x)$ is defined for real x and integer $n \ge 0$ as

$$J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(x \sin \theta - n\theta) d\theta.$$

Find leading-order asymptotic expressions for

- (i) $J_n(x)$ for $x \to +\infty$ and n fixed.
- (ii) $J_n(n \sec \alpha)$ for $n \to \infty$ and α fixed $(\alpha > 0)$.
- (iii) $J_n(n)$ for $n \to \infty$.

Standard results may be stated without proof. Recall that

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \,.$$

(a) A weakly perturbed harmonic oscillator satisfies the equation

$$\frac{d^2y}{dt^2} + y = \varepsilon f\left(y, \frac{dy}{dt}\right)$$

In the limit $\varepsilon \to 0$, use the method of multiple scales to find equations for the slow evolution of the amplitude R and phase θ of the oscillations in terms of averages $\langle f \cos(t+\theta) \rangle$ and $\langle f \sin(t+\theta) \rangle$ to be specified.

(i) What further may be deduced if f depends only on y? Find R and θ explicitly in the case

$$f = y^3$$
.

(ii) What further may be deduced if f depends only on dy/dt? Find R and θ explicitly in the case

$$f = \left(\frac{dy}{dt}\right)^3.$$

Recall that $\cos^4 \alpha = \frac{1}{8} \cos 4\alpha + \frac{1}{2} \cos 2\alpha + \frac{3}{8}$.

(b) If $m \to 1$ with m < 1 find a leading-order asymptotic approximation for the elliptic function

$$K(m) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{(1 - m\sin^2\theta)^{1/2}}.$$

What is the order of the next term?

3

(a) The function y(x) satisfies the differential equation

$$(1+\varepsilon)x^2y' = (1-\varepsilon)\varepsilon \, xy^2 - (1+\varepsilon)\varepsilon \, x + \varepsilon \, y^3 + 2\varepsilon^2 \, y^2 \quad \text{in} \quad 0 \leqslant x \leqslant 1 \,,$$

where $0 < \varepsilon \ll 1$. If y(1) = 1, calculate three terms of the outer solution of y. Locate the non-uniformity of the asymptoticness, and hence the rescaling for an inner region. Thence find two terms for the inner solution.

[Hint: The general solution to

$$\xi^2 g' - \left(\frac{3\xi}{2+\xi}\right)g = -\left(\frac{\xi}{2+\xi}\right)^{\frac{3}{2}}$$

is

$$g(\xi) = \frac{(1+k\xi)\xi^{\frac{1}{2}}}{(2+\xi)^{\frac{3}{2}}},$$

for some constant k.]

(b) Using matched asymptotic expansions find the value of z'(0) to leading order if $z(1) = e^{-1}$ and z(x) satisfies the equation

$$(x - \varepsilon z)z' + xz = e^{-x}.$$

 $\mathbf{4}$

The classical unsteady boundary-layer equations are

$$\bar{u}_t + \bar{u}\bar{u}_x + \bar{v}\bar{u}_y = \mathcal{U}_t + \mathcal{U}\mathcal{U}_x + \bar{u}_{yy}, \quad \bar{u}_x + \bar{v}_y = 0$$

where x, y are Cartesian co-ordinates, t is time, $\bar{u} \equiv \bar{u}(x, y, t)$ and $\bar{v} \equiv \bar{v}(x, y, t)$ are velocity components, and $\mathcal{U}(x, t)$ is the 'slip' velocity. Appropriate boundary conditions are

$$\bar{u} = \bar{v} = 0$$
 on $y = 0$, and $\bar{u} \to \mathcal{U}(x, t)$ as $y \to \infty$.

Consider the *linear* instability of a solution $(\bar{u}, \bar{v}) = (U, V)$ of the boundary-layer equations by writing

$$(\bar{u}, \bar{v}) = (U, V) + \delta(\tilde{u}, \tilde{v}),$$

where $0 < \delta \ll 1$. Find the linear equations that (\tilde{u}, \tilde{v}) satisfy, and state appropriate boundary conditions for (\tilde{u}, \tilde{v}) .

On the basis of the simplifying assumption $U \equiv U(y)$, V = 0, explain why it is possible to seek a normal mode solution of the form

$$(\tilde{u}, \tilde{v}) = (u(y), v(y)) \exp(i\alpha(x - ct)).$$

Derive a governing equation and boundary conditions for v. Explain why, if c is the eigenvalue for wavenumber α , the complex conjugate c^* is the eigenvalue for wavenumber $-\alpha$. Henceforth take $\alpha > 0$.

Suppose that the unperturbed velocity profile U, in addition to satisfying the no-slip condition U(0) = 0 and the free-stream condition $U \to \mathcal{U}$ as $y \to \infty$, has a point of zero shear at $y = y_c > 0$, i.e. $U_y(y_c) = 0$. In particular, assume that for $|y - y_c| \ll 1$ the velocity profile expands as

$$U = U(y_c) + \frac{1}{2}(y - y_c)^2 + \dots$$

Next, assume that the wavenumber is real and large in magnitude, i.e.

$$\alpha = \frac{k}{\varepsilon}$$
 where $0 < \varepsilon \ll 1$,

and seek an asymptotic solution for v by expanding v and c as

$$(v,c) = (v_0,c_0) + \varepsilon^{\frac{1}{2}}(v_1,c_1) + \dots$$

Discuss the validity of the leading-order outer solution

$$v_0 = \begin{cases} U - c_0 & \text{for } y > y_c \\ 0 & \text{for } y < y_c \end{cases}$$

where you should make an appropriate choice for c_0 .

Explain why a 'critical layer' exists close to $y = y_c$, and derive appropriate inner scalings

$$y - y_c = \varepsilon^p Y, \quad v = \varepsilon^q w(Y) + \dots,$$

Part III, Paper 74

TURN OVER

 $\mathbf{6}$

where p and q are to be determined. Show that

$$kYw - k(\frac{1}{2}Y^2 - c_1)w_Y = iw_{YYY}.$$

Having found a solution for v_1 , give matching conditions for w.

Find a transformation of variables $(Y,c_1,w) \to (z,C,W)$ that reduces the eigenvalue problem to

$$W_{zzz} - (\frac{1}{2}z^2 - C)W_z + zW = 0,$$

$$W \to \pm (\frac{1}{2}z^2 - C) \quad \text{as} \quad z \to \pm \infty.$$

Given that the eigenvalues are

$$C = \frac{4n+7}{\sqrt{2}}$$
 for $n = -2, -1, 1, 2, \dots$,

comment on the stability of the flow.

END OF PAPER