MATHEMATICAL TRIPOS Part III

Friday, 30 May, 2014 $-1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 73

SLOW VISCOUS FLOW

Attempt **QUESTION 1** and no more than **TWO OTHER** questions. There are **FOUR** questions in total.

The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

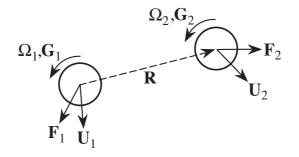
UNIVERSITY OF

1

(a) State the Papkovich–Neuber representation for the velocity and pressure in Stokes flow. Use this representation, explaining your choice of trial harmonic potentials, to determine the velocity field due to a rigid sphere of radius a moving with velocity $\mathbf{U} + \mathbf{\Omega} \wedge \mathbf{x}$ through unbounded fluid of viscosity μ that is otherwise at rest.

[You may assume below that the force and couple required on this sphere are $6\pi\mu a\mathbf{U}$ and $8\pi\mu a^{3}\mathbf{\Omega}$, respectively.]

(b) Two identical rigid spheres of radius a, denoted by i = 1, 2, undergo rigid-body motions $\mathbf{U}_i + \mathbf{\Omega}_i \wedge \mathbf{x}$ in unbounded fluid under the influence of applied forces \mathbf{F}_i and couples \mathbf{G}_i . As shown in the diagram, the \mathbf{U}_i and \mathbf{F}_i are coplanar and perpendicular to the $\mathbf{\Omega}_i$ and \mathbf{G}_i , and \mathbf{R} is the vector distance from sphere 1 to sphere 2.



- (i) If $\mathbf{F}_1 = \mathbf{F}_2 = \mathbf{0}$ show that $R = |\mathbf{R}|$ is constant. If, in addition, $\mathbf{G}_1 = \mathbf{G}_2$, what can be said about the \mathbf{U}_i and $\mathbf{\Omega}_i$?
- (ii) State the minimum dissipation theorem. If $\mathbf{G}_1 = \mathbf{G}_2 = \mathbf{F}_2 = \mathbf{0}$, show that $\mathbf{U}_1 \cdot \mathbf{F}_1 \leq F_1^2/(6\pi\mu a)$? Justify your answer carefully. Does this inequality hold if $\mathbf{G}_1 \neq \mathbf{0}$? Why, or why not?

You are now given that $\mathbf{F}_1 = 6\pi\mu a \mathbf{V}$, where \mathbf{V} is a constant, $\mathbf{G}_1 = \mathbf{G}_2 = \mathbf{0}$, and $R \gg a$.

- (iii) For $\mathbf{F}_2 = 6\pi\mu a \mathbf{V}$, find the \mathbf{U}_i and $\mathbf{\Omega}_i$ correct to $O(a^2/R^2)$.
- (iv) For $\mathbf{U}_2 = \mathbf{V}$, find \mathbf{F}_2 and \mathbf{U}_1 correct to $O(a^2/R^2)$.
- (v) For $\mathbf{F}_2 = \mathbf{0}$, find the order of magnitude of $\mathbf{U}_1 \mathbf{V}$ and of $\mathbf{\Omega}_1$.

[You may assume the Faxén formulae

$$\mathbf{U} = \frac{\mathbf{F}}{6\pi\mu a} + \mathbf{u}_{\infty} + \frac{a^2}{6}\nabla^2 \mathbf{u}_{\infty} , \quad \mathbf{\Omega} = \frac{\mathbf{G}}{8\pi\mu a^3} + \frac{1}{2}\boldsymbol{\omega}_{\infty} ,$$

but should explain how you apply them.]

CAMBRIDGE

 $\mathbf{2}$

A rigid horizontal boundary is covered with a thin liquid film of height h(x), viscosity μ and density ρ , where x is the horizontal coordinate. Insoluble surfactant with concentration C(x) and diffusivity D_s resides on the surface of the film and reduces its surface tension according to the equation $\gamma(C) = \gamma_0 - AC$, where γ_0 and A are positive constants. The flow is steady.

Assume that the variations of h and C are such that lubrication theory applies. Hence find the (dimensional) horizontal fluxes q and j of liquid and surfactant produced by the combined effects of Marangoni stresses, gravity, capillarity and surfactant diffusion. Let dimensionless variables $\Gamma = C/C_0$ and X = x/L be defined, where C_0 and L are constants. Show that the corresponding dimensionless fluxes can be written as

$$Q = -\frac{1}{2}H^{2}\Gamma_{X} - \frac{1}{3}H^{3}\left(H - G\left\{(1 - \alpha\Gamma)H_{XX}\right\}\right)_{X},$$
(1)

$$J = -(H\Gamma + \Delta)\Gamma_X - \frac{1}{2}H^2\Gamma \left(H - G\left\{(1 - \alpha\Gamma)H_{XX}\right\}\right)_X,\tag{2}$$

where Q and J, the dimensionless height H, and the dimensionless parameters Δ , G and α should all be defined in terms of the dimensional quantities.

Assume that Δ and G are negligible from now on. Show that (1) and (2) can be written in the form

$$\Gamma_X = f(\Gamma, H), \qquad HH_X = g(\Gamma, H)$$

for some functions f and g to be determined. Sketch the trajectories in the (Γ, H) phase plane, assuming that Q and J are strictly positive. [Hint: Consider the signs of H_X and Γ_X in the quarter-plane $H \ge 0, \Gamma \ge 0$.]

Now consider a finite-length film in $0 \leq X \leq 1$ with imposed boundary conditions $\Gamma(0) = 1$, $H(0) = H_0$ and $\Gamma(1) = 1 - \delta$, where $0 \leq \delta \leq 1$.

- (i) If the surfactant flux is zero, find solutions for H(X), $\Gamma(X)$ and then Q. [The equations for H and Γ can involve Q.] Sketch the shape of the film, showing the velocity profile in the liquid.
- (ii) If the liquid flux is zero, find an equation for Γ as a function of H, and hence an implicit equation in the form X = F(H) for the height of the film.

Consider the case $H_0 = 0$. Sketch the shape of the film, showing the velocity profile in the liquid. Show that

$$J = \frac{\delta^{3/2} (1 - \frac{3}{5}\delta)}{2\sqrt{3}}.$$

Sketch the variation of J with δ for $0 \leq \delta \leq 1$, and comment briefly on why the location of the maximum J may or may not be surprising physically.

UNIVERSITY OF

3

A long cylindrical tube of radius R, with its axis vertical, is filled with fluid of density ρ_0 and viscosity μ . A source of light fluid of density $\rho_0 - \tilde{\rho}$ and much smaller viscosity $\lambda \mu$ (i.e. $\tilde{\rho} > 0$ and $\lambda \ll 1$) produces a thin axisymmetric plume of radius $a(z,t) \ll R$ which rises under its buoyancy along the axis of the tube. In both fluids the modified pressure P is defined by $P = p + \rho_0 gz$.

Write down the governing equations and boundary conditions for the vertical velocity w(r) in the case of steady flow with $a = a_0$, where a_0 is a constant. If there is no pressure gradient dP/dz show that

$$w(0)/w(a_0) = 1 + [2\lambda \ln(R/a_0)]^{-1}.$$

[Note that $\nabla^2 \phi(r,z) = \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \phi}{\partial r} + \frac{\partial^2 \phi}{\partial z^2}$ in cylindrical polar coordinates.]

Now consider the case of varying a(z,t) with $|\partial a/\partial z| \ll 1$. Assume that $(a/R)^4 \ll \lambda \ll [\ln(R/a)]^{-1}$ and that there is no net flux along the tube. Denote the modified pressures inside and outside the plume by P_i and P_o , respectively. Show that the vertical flux q inside the plume is given at leading order by

$$q = \frac{\pi a^4}{8\lambda\mu} \left(\tilde{\rho}g - \frac{\partial P_i}{\partial z} \right)$$

commenting briefly on any approximations made. [You do not need to determine the external flow.] Show also that $|\partial P_o/\partial z| \ll |\tilde{\rho}g - \partial P_i/\partial z|$. Assume from now on that P_o is negligible.

By approximating the local flow in $a < r \ll R$ as a radial source flow in two dimensions, establish a linear relationship between P_i and $\partial a/\partial t$. Hence derive the dimensionless evolution equation for the propagation of disturbances on the plume

$$\frac{\partial A}{\partial T} + \frac{\partial}{\partial Z} \left(A^2 \left[1 - \frac{\partial}{\partial Z} \left(\frac{1}{A} \frac{\partial A}{\partial T} \right) \right] \right) = 0,$$

where $A = a^2/a_0^2$, a_0 is a typical radial scale, and Z and T should be defined.

Find the dispersion relationship for a small perturbation proportional to $\exp[i(kZ - \omega T)]$ to a uniform plume with A = 1. Which way does the perturbation propagate?

Look for travelling-wave solutions of the form A = f(Z - cT), where $f(\zeta) \to f_0$ as $\zeta \to \pm \infty$. Show that such travelling waves satisfy

$$\frac{c}{2}\frac{f'^2}{f^2} + V(f) = \text{const.}$$

where V is to be found. Deduce that the speed is related to the amplitude $f_{\text{max}} = \alpha f_0$ by

$$c\left(1-\frac{2}{\alpha}+\frac{1}{\alpha^2}\right) = f_0\left(2\ln\alpha - 1 + \frac{1}{\alpha^2}\right).$$

Part III, Paper 73

CAMBRIDGE

 $\mathbf{4}$

A vertical cylinder of radius a is coated with a thin film of fluid of density ρ , viscosity μ and thickness $\epsilon \bar{h}(\bar{z}, \bar{t})$, where $\epsilon \ll 1$ and \bar{z} measures the (dimensional) vertical distance down the cylinder. The free surface of the film is acted on by uniform surface tension γ . Use lubrication theory to derive the dimensionless evolution equation

$$\frac{\partial h}{\partial t} + \frac{1}{3} \frac{\partial}{\partial z} \left[h^3 \left(\frac{\partial^3 h}{\partial z^3} + \frac{\partial h}{\partial z} + G \right) \right] = 0, \tag{1}$$

where $h = \bar{h}/a$ and the other dimensionless variables should be defined.

By setting $h = 1 + \alpha \exp[ikz + st]$, where $|\alpha| \ll 1$, determine s as a function of k, and describe briefly the evolution of small disturbances to a uniform layer.

Look for solitary travelling-wave solutions to (1) of the form h(z,t) = H(x), where x = z - ct and $H \to 1$ as $x \to \pm \infty$. Find a third-order differential equation for H(x). Now find, as follows, an approximate description of a solitary large-amplitude wave that travels down the cylinder with dimensionless speed $c \gg 1$. Assume that

- (i) for $0 < x < 2\pi$, $H(x) = c^{2/3}H_2(x) + H_0(x) + O(c^{-1/3});$
- (ii) near x = 0 and $x = 2\pi$ there are short transition regions where the curvature changes rapidly to match the wave to uniform films ahead and behind;
- (iii) G = O(1).

Show that the leading-order equation for $0 < x < 2\pi$ is $H_2''' + H_2' = 0$. Determine $H_2(x)$ to within a multiplicative constant using the fact that $H, H' \ll c^{2/3}$ near $x = 0, 2\pi$.

Show that it is possible to define a coordinate X in each of the transition regions in such a way that the leading-order differential equation becomes $H^3H_{XXX} = H - 1$. Explain why this equation has, to within translations in X, a unique solution $H_-(X)$ with $H_- \to 1$ as $X \to -\infty$ and a one-parameter set of solutions $H_+(X)$ with $H_+ \to 1$ as $X \to +\infty$.

If $H_{-} \sim \frac{1}{2}\kappa X^2 + \beta_{-}$ as $X \to \infty$ (with $\kappa = 0.643, \beta_{-} = 2.90$), show that the maximum (dimensional) film thickness is $2\kappa a\epsilon (3c)^{2/3}$. Sketch H(x) indicating the location of any capillary waves, and show that these waves have (dimensional) wavelength $4\pi a/(3^{5/6}c^{1/3})$.

Assuming that $H'_0 = 0$ at $x = 0, 2\pi$, show that

$$H_0(x) = A_0 + B_0 \cos x + G(\sin x - x)$$

for some constants A_0 and B_0 . There is a unique solution $H_+(X)$ with $H''_+ \to \kappa$ as $X \to -\infty$, and this has $H_+ \sim \frac{1}{2}\kappa X^2 + \beta_+$ (with $\beta_+ = -0.85$). By matching heights near $x = 0, 2\pi$, deduce that the (dimensional) uniform film thickness far from the wave is given by

$$\epsilon a = \frac{2\pi}{\beta_- - \beta_+} \frac{\rho g a^3}{\gamma}$$

[TURN OVER

END OF PAPER