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(a) State the Papkovich–Neuber representation for the velocity and pressure in
Stokes flow. Use this representation, explaining your choice of trial harmonic potentials,
to determine the velocity field due to a rigid sphere of radius a moving with velocity
U+Ω ∧ x through unbounded fluid of viscosity µ that is otherwise at rest.

[You may assume below that the force and couple required on this sphere are 6πµaU and

8πµa3Ω, respectively. ]

(b) Two identical rigid spheres of radius a, denoted by i = 1, 2, undergo rigid-body
motions Ui+Ωi∧x in unbounded fluid under the influence of applied forces Fi and couples
Gi. As shown in the diagram, the Ui and Fi are coplanar and perpendicular to the Ωi

and Gi, and R is the vector distance from sphere 1 to sphere 2.

U1
F1

U2

R

F2

Ω2

Ω1,G1

,G2

(i) If F1 = F2 = 0 show that R = |R| is constant. If, in addition, G1 = G2, what can
be said about the Ui and Ωi?

(ii) State the minimum dissipation theorem. If G1 = G2 = F2 = 0, show that
U1 · F1 6 F 2

1 /(6πµa)? Justify your answer carefully. Does this inequality hold
if G1 6= 0? Why, or why not?

You are now given that F1 = 6πµaV, where V is a constant, G1 = G2 = 0, and R ≫ a.

(iii) For F2 = 6πµaV, find the Ui and Ωi correct to O(a2/R2).

(iv) For U2 = V, find F2 and U1 correct to O(a2/R2).

(v) For F2 = 0, find the order of magnitude of U1 −V and of Ω1.

[You may assume the Faxén formulae

U =
F

6πµa
+ u∞ +

a2

6
∇2u∞ , Ω =

G

8πµa3
+

1

2
ω∞ ,

but should explain how you apply them.]
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A rigid horizontal boundary is covered with a thin liquid film of height h(x),
viscosity µ and density ρ, where x is the horizontal coordinate. Insoluble surfactant
with concentration C(x) and diffusivity Ds resides on the surface of the film and reduces
its surface tension according to the equation γ(C) = γ0−AC, where γ0 and A are positive
constants. The flow is steady.

Assume that the variations of h and C are such that lubrication theory applies.
Hence find the (dimensional) horizontal fluxes q and j of liquid and surfactant produced
by the combined effects of Marangoni stresses, gravity, capillarity and surfactant diffusion.
Let dimensionless variables Γ = C/C0 and X = x/L be defined, where C0 and L are
constants. Show that the corresponding dimensionless fluxes can be written as

Q = −1

2
H2ΓX − 1

3
H3

(

H −G
{

(1− αΓ)HXX

})

X
, (1)

J = − (HΓ +∆)ΓX − 1

2
H2Γ

(

H −G
{

(1− αΓ)HXX

})

X
, (2)

where Q and J , the dimensionless height H, and the dimensionless parameters ∆, G and
α should all be defined in terms of the dimensional quantities.

Assume that ∆ and G are negligible from now on. Show that (1) and (2) can be
written in the form

ΓX = f(Γ,H), HHX = g(Γ,H)

for some functions f and g to be determined. Sketch the trajectories in the (Γ,H) phase
plane, assuming that Q and J are strictly positive. [Hint: Consider the signs of HX and

ΓX in the quarter-plane H > 0,Γ > 0.]

Now consider a finite-length film in 0 6 X 6 1 with imposed boundary conditions
Γ(0) = 1, H(0) = H0 and Γ(1) = 1− δ, where 0 6 δ 6 1.

(i) If the surfactant flux is zero, find solutions for H(X), Γ(X) and then Q. [The
equations for H and Γ can involve Q.] Sketch the shape of the film, showing the
velocity profile in the liquid.

(ii) If the liquid flux is zero, find an equation for Γ as a function of H, and hence an
implicit equation in the form X = F (H) for the height of the film.

Consider the case H0 = 0. Sketch the shape of the film, showing the velocity profile
in the liquid. Show that

J =
δ3/2(1− 3

5
δ)

2
√
3

.

Sketch the variation of J with δ for 0 6 δ 6 1, and comment briefly on why the
location of the maximum J may or may not be surprising physically.
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A long cylindrical tube of radiusR, with its axis vertical, is filled with fluid of density
ρ0 and viscosity µ. A source of light fluid of density ρ0 − ρ̃ and much smaller viscosity λµ
(i.e. ρ̃ > 0 and λ ≪ 1) produces a thin axisymmetric plume of radius a(z, t) ≪ R which
rises under its buoyancy along the axis of the tube. In both fluids the modified pressure
P is defined by P = p+ ρ0gz.

Write down the governing equations and boundary conditions for the vertical
velocity w(r) in the case of steady flow with a = a0, where a0 is a constant. If there
is no pressure gradient dP/dz show that

w(0)/w(a0) = 1 + [2λ ln(R/a0)]
−1.

[Note that ∇2φ(r, z) =
1

r

∂

∂r
r
∂φ

∂r
+

∂2φ

∂z2
in cylindrical polar coordinates.]

Now consider the case of varying a(z, t) with |∂a/∂z| ≪ 1. Assume that (a/R)4 ≪
λ ≪ [ln(R/a)]−1 and that there is no net flux along the tube. Denote the modified
pressures inside and outside the plume by Pi and Po, respectively. Show that the vertical
flux q inside the plume is given at leading order by

q =
πa4

8λµ

(

ρ̃g − ∂Pi

∂z

)

commenting briefly on any approximations made. [You do not need to determine the
external flow.] Show also that |∂Po/∂z| ≪ |ρ̃g− ∂Pi/∂z|. Assume from now on that Po is
negligible.

By approximating the local flow in a < r ≪ R as a radial source flow in two
dimensions, establish a linear relationship between Pi and ∂a/∂t. Hence derive the
dimensionless evolution equation for the propagation of disturbances on the plume

∂A

∂T
+

∂

∂Z

(

A2

[

1− ∂

∂Z

( 1

A

∂A

∂T

)

])

= 0,

where A = a2/a20, a0 is a typical radial scale, and Z and T should be defined.

Find the dispersion relationship for a small perturbation proportional to exp[i(kZ−
ωT )] to a uniform plume with A = 1. Which way does the perturbation propagate?

Look for travelling-wave solutions of the form A = f(Z − cT ), where f(ζ) → f0 as
ζ → ±∞. Show that such travelling waves satisfy

c

2

f ′2

f2
+ V (f) = const.

where V is to be found. Deduce that the speed is related to the amplitude fmax = αf0 by

c

(

1− 2

α
+

1

α2

)

= f0

(

2 lnα− 1 +
1

α2

)

.
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A vertical cylinder of radius a is coated with a thin film of fluid of density ρ, viscosity
µ and thickness ǫh̄(z̄, t̄), where ǫ ≪ 1 and z̄ measures the (dimensional) vertical distance
down the cylinder. The free surface of the film is acted on by uniform surface tension γ.
Use lubrication theory to derive the dimensionless evolution equation

∂h

∂t
+

1

3

∂

∂z

[

h3
(∂3h

∂z3
+

∂h

∂z
+G

)

]

= 0, (1)

where h = h̄/a and the other dimensionless variables should be defined.

By setting h = 1 + α exp[ikz + st], where |α| ≪ 1, determine s as a function of k,
and describe briefly the evolution of small disturbances to a uniform layer.

Look for solitary travelling-wave solutions to (1) of the form h(z, t) = H(x), where
x = z − ct and H → 1 as x → ±∞. Find a third-order differential equation for H(x).
Now find, as follows, an approximate description of a solitary large-amplitude wave that
travels down the cylinder with dimensionless speed c ≫ 1. Assume that

(i) for 0 < x < 2π, H(x) = c2/3H2(x) +H0(x) +O(c−1/3);

(ii) near x = 0 and x = 2π there are short transition regions where the curvature
changes rapidly to match the wave to uniform films ahead and behind;

(iii) G = O(1).

Show that the leading-order equation for 0 < x < 2π is H ′′′

2 +H ′

2 = 0. Determine H2(x)
to within a multiplicative constant using the fact that H,H ′ ≪ c2/3 near x = 0, 2π.

Show that it is possible to define a coordinate X in each of the transition regions
in such a way that the leading-order differential equation becomes H3HXXX = H − 1.
Explain why this equation has, to within translations in X, a unique solution H−(X)
with H− → 1 as X → −∞ and a one-parameter set of solutions H+(X) with H+ → 1 as
X → +∞.

IfH− ∼ 1

2
κX2+β− asX → ∞ (with κ = 0.643, β− = 2.90), show that the maximum

(dimensional) film thickness is 2κaǫ(3c)2/3. Sketch H(x) indicating the location of any
capillary waves, and show that these waves have (dimensional) wavelength 4πa/(35/6c1/3).

Assuming that H ′

0 = 0 at x = 0, 2π, show that

H0(x) = A0 +B0 cos x+G(sin x− x)

for some constants A0 and B0. There is a unique solution H+(X) with H ′′

+ → κ as
X → −∞, and this has H+ ∼ 1

2
κX2 + β+ (with β+ = −0.85). By matching heights near

x = 0, 2π, deduce that the (dimensional) uniform film thickness far from the wave is given
by

ǫa =
2π

β− − β+

ρga3

γ
.
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