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1

A microsphere of radius a and drag coefficient ζ is constrained to move along the
x-axis, and is acted on by an optical trap which is moving in the positive x-direction at
velocity vT . When the trap is located at a point x0 it exerts a force F (x − x0), so the
overdamped dynamics of the particle is

ζẋ = F (x− vT t) .

Suppose that the trap has compact support, so that F (x) = 0 for x < −XL and for
x > XR. If the trap starts to the left of the particle, find the particle’s net displacement
∆x after the trap has passed it by, and the time ∆t spent by the particle interacting
with the trap. What is the condition that assures that the particle does not remain
trapped as t → ∞? Assuming this is the case, show that whatever the form of F (x) the
net displacement is always in the direction of the trap motion, and suggest a heuristic
explanation for this result. Find the asymptotic behaviour of ∆x for large trap velocities.

The trap is now moved around a circle of radius R ≫ a. Derive the particle’s
net rotational frequency fp as a function of the trap angular frequency fT = vT /(2πR),
the displacement ∆x in each kick, the interaction time ∆t and the potential width
2X0 = XR − XL. Confirm that in the regime of suitably large trap velocity, which you
should define precisely, one obtains the intuitive result fp ≃ (∆x/2πR)fT . Specializing
to the case of a triangular trapping potential, with F (x) = F for −X0 < x < 0 and
F (x) = −F for 0 < x < X0, obtain an explicit expression for fp/fc as a function of the
two quantities α = X0/(πR) and β = fT /fc, where 2πRfc = F/ζ.

2

A long cylindrical vesicle of radiusR0, aligned along the z-axis, is subject to a tension
σ ≫ κ/R2

0, where κ is the bending modulus. Thus, its energy is well-approximated by σS,
where S is the total surface area of the vesicle. Assuming that fluctuations in the radius
preserve axisymmetry, so the fluctuating radius R(z) does not depend on the cylindrical
polar angle, find the spectrum of thermal fluctuations as a function of the longitudinal
wavevector q, at fixed enclosed volume of fluid. You may take R(z) = ρ0+uq sin qz, where
ρ0 is to be determined by volume conservation. Explain the significance of your result for
qR0 < 1.

A circular inclusion of radiusR0 in a lipid membrane consists of a distinct phase from
the surrounding lipids, so there is a line tension γ between the two. Find the spectrum of
thermal fluctuations in the radius, at fixed enclosed area, as above. Explain the significance
of the result for the mode with qR0 = 1.
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Two parallel charged, planar, laterally-infinite membranes are located at z = ±d/2.
The upper one has charge density σ+ = α cos(kx), while the lower has σ

−
= α cos(kx+θ),

where θ is a constant phase shift. Within Debye–Hückel theory, find the electrostatic
energy as a function of θ by computing the electrostatic potential φ in the region between
the sheets. Find the value of θ that minimizes the energy, averaged over one wavelength
of the charge modulation, and explain the physical content of this result.
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