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Consider small-amplitude, two-dimensional monochromatic internal waves in a
Boussinesq fluid with constant buoyancy frequency, N2, where
N2 = _i@
po dz’

and po is a characteristic value of the background density distribution 5(z). In a stationary

ambient fluid, derive the dispersion relation for waves associated with a two-dimensional
vertical displacement perturbation

¢ = A¢cos(kx +mz — Qt),

where A¢, k, m and ) are all real. Show that statically unstable regions are predicted to
develop in the flow if [A¢| > |1/m].

Now consider a situation where the ambient fluid velocity varies with height, such
that U(z) = sz for z > 0 where s is a positive real constant. A two-dimensional wave
packet propagates upwards into the upper half-plane, with horizontal wavenumber k > 0
and vertical wavenumber my < 0 at z = 0. Using the ray-tracing equations (which you
may quote without proof), show that the intrinsic frequency w and the horizontal phase
speed ¢, = w/k measured by a stationary observer remain constant for all time. Hence
derive an expression for the height 2. of the critical level where ¢, = U(2).

Furthermore, show that the ray followed by this wave packet is defined implicitly
as the solution to the differential equation
N2

2
= — 1.
tan“ O(z) @ kso)?

P _ tan|@] + i
dz N sin |©] cos? |O]’

You are given that
N242
c = =B,
Pw—kU

where A¢ is the displacement amplitude, ¢ is the vertical component of the group velocity,
and B is a constant. Hence establish that the wave packet is expected to induce statically
unstable regions at a height z where

cot |0(z)| = O(lw — ksz]'/).
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You are given that a turbulent buoyant plume in an unstratified environment of
constant density p, satisfies the equations

d d FQ
e — M1/2 M =
sz dz
[t 21 = /
0
P (7‘2

Fy = /0 9(1 = pp/pa)wpd

Q

);

where p, and w, are the plume density and vertical velocity respectively, and « is
the entrainment parameter which you may assume to be constant. Show that these
equations have an attracting similarity solution, to which all plumes with source conditions
M(0) = Mg and Q(0) = Qs are attracted. If both Qs > 0 and My > 0, derive a relationship
between these source conditions such that the plume is in pure plume balance at all heights,
a concept you should define carefully.

Consider two identical top-hat plumes, with source radii by, vertical velocities wy and
reduced gravities ¢, such that the plumes are in pure plume balance at their respective
sources. The centres of the two sources are separated by a distance Ls. Assuming that the
two plumes do not interact as they rise, use an equation for the plume radius to determine
the height z,, at which the edge of one plume is predicted to be vertically above the
midpoint of the source of the other plume. Calculate the plume radius b,,, velocity wy,
and reduced gravity ¢/, at this height in terms of Fs, Qs and L.

Assume that the two plumes combine at this height, so that the combined plume
has velocity w,,, reduced gravity g/, and radius v/2b,, (i.e. the cross-sectional area 27b2,
is the sum of the two independent plumes). Determine whether this combined plume is
forced, lazy or pure, concepts you should define carefully. Identify the cross-sectional area
7Tb12, such that the combined plume is in pure plume balance, assuming that the reduced
gravity and vertical velocity are not affected by the merging process, and comment briefly
on your results.
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Consider a two-dimensional inviscid flow with a piecewise linear mean velocity
distribution U(z) and piecewise constant mean density distribution p(z). You may assume
that the perturbation streamfunction 1,

W(x, z,t) = Re |1h(z) exp(ik]z — ct])]
(the wavenumber k is real) satisfies Y’ = k2 except at ‘interfaces’ where the mean

velocity, density or vorticity is discontinuous. At such interfaces, you may also assume
that v satisfies the jump conditions:

n +
= d~ ~d— gp Y -
(=g v - @U‘g<m_c>>]_‘o

Using a characteristic length scale h, velocity difference AU, density difference Ap and

1]2; +
— = 0;

U =0

reference density pg to scale quantities:

AU, = AU~ _ Ap. ~ hz  kh _  gAph
C_—CuU_—U7p_p0+7pvz_7ua_77J_mu

the nondimensional form of the jump conditions are
1; + p p 1; +
- =0; U—¢&)—=tp—1—=U —Jp =0.
T 9 ( )=z vz p( )]_

dz

Consider a three-layer flow:

] 1 1 i>1;
U= z o, p= 0 |2 <1
-1 1 z< -1
Show that ¢ satisfies
Ay et — 200 —1)* s N (2a — [14 J])? — e~ (1 + J)? o
402 o 402
Hence show that the flow is unstable for
ae® ae®
<1l4+J< .
cosh « + sinh «

Interpret this instability in terms of a wave resonance in the limit of large wavenumber.
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Consider a cylindrical tank, of depth H and radius R. Defining the upper surface
as z = 0, initially there is a linear density stratification ranging from density p; at z = 0
to pp > pp at z = —H. The upper surface of the tank is a disc which is driven at a steady
rotation rate (2. Assume that this disc drives mixing such that an upper layer of uniform
density p,(t) and depth h(t) develops, while the linearly stratified lower layer remains
stationary. Show that the potential energy of the system increases by an amount

h’ 9(po — p1)
AP = porR*N*—; N?= :
PoTe 12 oo H
where N is the buoyancy frequency and pg is a reference density. Show that the reduced
gravity jump at the interface between the well-mixed upper layer and the linearly stratified
lower layer is given by

9lpi —pt)  9lpu—pr) _ N?h
Po Po 27

where p; is the density at the interface at the top of the linearly stratified lower layer. For
some drag coefficient cp, the interfacial stress is 7 = cppou2, where u, is a characteristic
(radial) velocity in the upper layer. Briefly present physical arguments to justify the
assumption that the kinetic energy of the upper well-mixed layer will approach a constant.

It is experimentally observed that the characteristic thickness ¢ of the interface
between the well-mixed upper layer and the linearly stratified lower layer is constant. You
should further assume that:

1: the rate of increase of potential energy is proportional to the rate of working of
the turbulent stress at the interface, multiplied by a nondimensional power law function
proportional to (2/N)*(6/R)? (a and 8 to be determined);

2: the constant kinetic energy does not depend on N, and hence u2h = AQ?R? for some
empirical constant A;

3: the entrainment parameter £/ depends only on the local interfacial Richardson number
Ri;, ie.

dh/dt i — Pu)0
B= T (riyr, R = L pu)
Uq, poluy,

where v is once again to be determined.
Hence establish that the layer depth h is expected to scale as

h Q2R\ V/?
B.

for some empirical constant
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END OF PAPER
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