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Consider small-amplitude, two-dimensional monochromatic internal waves in a
Boussinesq fluid with constant buoyancy frequency, N2, where

N2 = − g

ρ0

dρ

dz
,

and ρ0 is a characteristic value of the background density distribution ρ(z). In a stationary
ambient fluid, derive the dispersion relation for waves associated with a two-dimensional
vertical displacement perturbation

ζ = Aζ cos(kx+mz − Ωt),

where Aζ , k, m and Ω are all real. Show that statically unstable regions are predicted to
develop in the flow if |Aζ | > |1/m|.

Now consider a situation where the ambient fluid velocity varies with height, such
that U(z) = sz for z > 0 where s is a positive real constant. A two-dimensional wave
packet propagates upwards into the upper half-plane, with horizontal wavenumber k > 0
and vertical wavenumber m0 < 0 at z = 0. Using the ray-tracing equations (which you
may quote without proof), show that the intrinsic frequency ω and the horizontal phase
speed cx = ω/k measured by a stationary observer remain constant for all time. Hence
derive an expression for the height zc of the critical level where cx = U(zc).

Furthermore, show that the ray followed by this wave packet is defined implicitly
as the solution to the differential equation

dx

dz
= tan |Θ|+ ksz

N sin |Θ| cos2 |Θ| , tan2 Θ(z) =
N2

(ω − ksz)2
− 1.

You are given that

cgz
N2A2

ζ

ω − kU
= B,

where Aζ is the displacement amplitude, cgz is the vertical component of the group velocity,
and B is a constant. Hence establish that the wave packet is expected to induce statically
unstable regions at a height z where

cot |Θ(z)| = O([ω − ksz]1/4).
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You are given that a turbulent buoyant plume in an unstratified environment of
constant density ρa satisfies the equations

d

dz
Q = 2αM1/2;

d

dz
M =

FsQ

M
;

Q =

∫

∞

0

wpd(r
2); M =

∫

∞

0

w2
pd(r

2);

Fs =

∫

∞

0

g(1− ρp/ρa)wpd(r
2),

where ρp and wp are the plume density and vertical velocity respectively, and α is
the entrainment parameter which you may assume to be constant. Show that these
equations have an attracting similarity solution, to which all plumes with source conditions
M(0) =Ms and Q(0) = Qs are attracted. If both Qs > 0 andMs > 0, derive a relationship
between these source conditions such that the plume is in pure plume balance at all heights,
a concept you should define carefully.

Consider two identical top-hat plumes, with source radii bs, vertical velocities ws and
reduced gravities g′s, such that the plumes are in pure plume balance at their respective
sources. The centres of the two sources are separated by a distance Ls. Assuming that the
two plumes do not interact as they rise, use an equation for the plume radius to determine
the height zm at which the edge of one plume is predicted to be vertically above the
midpoint of the source of the other plume. Calculate the plume radius bm, velocity wm

and reduced gravity g′m at this height in terms of Fs, Qs and Ls.

Assume that the two plumes combine at this height, so that the combined plume
has velocity wm, reduced gravity g′m and radius

√
2bm (i.e. the cross-sectional area 2πb2m

is the sum of the two independent plumes). Determine whether this combined plume is
forced, lazy or pure, concepts you should define carefully. Identify the cross-sectional area
πb2p such that the combined plume is in pure plume balance, assuming that the reduced
gravity and vertical velocity are not affected by the merging process, and comment briefly
on your results.
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Consider a two-dimensional inviscid flow with a piecewise linear mean velocity
distribution U(z) and piecewise constant mean density distribution ρ(z). You may assume
that the perturbation streamfunction ψ,

ψ(x, z, t) = Re
[

ψ̂(z) exp(ik[x− ct])
]

(the wavenumber k is real) satisfies ψ̂′′ = k2ψ̂ except at ‘interfaces’ where the mean
velocity, density or vorticity is discontinuous. At such interfaces, you may also assume
that ψ̂ satisfies the jump conditions:

[

ψ̂

(U − c)

]+

−

= 0;

[

(U − c)
d

dz
ψ̂ − ψ̂

d

dz
U − gρ

ρ0

(

ψ̂

(U − c)

)]+

−

= 0.

Using a characteristic length scale h, velocity difference ∆U , density difference ∆ρ and
reference density ρ0 to scale quantities:

c =
∆U

2
c̃; U =

∆U

2
Ũ ; ρ = ρ0 +

∆ρ

2
ρ̃; z =

hz̃

2
; α =

kh

2
; J =

g∆ρh

ρ0∆U2
;

the nondimensional form of the jump conditions are

[

ψ̃

(Ũ − c̃)

]+

−

= 0;

[

(Ũ − c̃)
d

dz̃
ψ̃ − ψ̃

d

dz̃
Ũ − Jρ̃

(

ψ̃

(Ũ − c̃)

)]+

−

= 0.

Consider a three-layer flow:

Ũ =







1
z̃
−1

, ρ̃ =







−1 z̃ > 1;
0 |z̃| < 1;
1 z̃ < −1.

Show that c̃ satisfies

c̃4 + c̃2
[

e−4α − (2α− 1)2

4α2
− 1− J

α

]

+

[

(2α − [1 + J ])2 − e−4α(1 + J)2

4α2

]

= 0.

Hence show that the flow is unstable for

αeα

coshα
< 1 + J <

αeα

sinhα
.

Interpret this instability in terms of a wave resonance in the limit of large wavenumber.
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Consider a cylindrical tank, of depth H and radius R. Defining the upper surface
as z = 0, initially there is a linear density stratification ranging from density ρt at z = 0
to ρb > ρt at z = −H. The upper surface of the tank is a disc which is driven at a steady
rotation rate Ω. Assume that this disc drives mixing such that an upper layer of uniform
density ρu(t) and depth h(t) develops, while the linearly stratified lower layer remains
stationary. Show that the potential energy of the system increases by an amount

∆P = ρ0πR
2N2h

3

12
; N2 =

g(ρb − ρt)

ρ0H
,

where N is the buoyancy frequency and ρ0 is a reference density. Show that the reduced
gravity jump at the interface between the well-mixed upper layer and the linearly stratified
lower layer is given by

g(ρi − ρt)

ρ0
− g(ρu − ρt)

ρ0
=
N2h

2
,

where ρi is the density at the interface at the top of the linearly stratified lower layer. For
some drag coefficient cD, the interfacial stress is τ = cDρ0u

2
u, where uu is a characteristic

(radial) velocity in the upper layer. Briefly present physical arguments to justify the
assumption that the kinetic energy of the upper well-mixed layer will approach a constant.

It is experimentally observed that the characteristic thickness δ of the interface
between the well-mixed upper layer and the linearly stratified lower layer is constant. You
should further assume that:

1: the rate of increase of potential energy is proportional to the rate of working of
the turbulent stress at the interface, multiplied by a nondimensional power law function
proportional to (Ω/N)α(δ/R)β (α and β to be determined);

2: the constant kinetic energy does not depend on N , and hence u2uh = AΩ2R3 for some
empirical constant A;

3: the entrainment parameter E depends only on the local interfacial Richardson number
Rii, i.e.

E =
dh/dt

uu
∝ (Rii)

−γ , Rii =
g(ρi − ρu)δ

ρ0u2u
,

where γ is once again to be determined.
Hence establish that the layer depth h is expected to scale as

h

R
= B

(

Ω2R

N2δ

)1/3

(Ωt)2/9 ,

for some empirical constant B.
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