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In this question we will sometimes use the notation ft(x, v) = f(t, x, v).
Consider the inhomogeneous transportation equation:

{
∂tf(t, x, v) + v∂xf(t, x, v) + x∂vf(t, x, v) = h(t, x, v) x, v ∈ R, t > 0

f |t=0 = f0.
(1)

(a) Solve the characteristic equations associated with (1) and assuming f0 ∈ C1 (R× R)
and h ∈ C1 (R× R× R) find an explicit solution to the equation (you are required to
show your steps and not just give a final answer).

(b) Show explicitly that det
(
∂(S0,t(x,v))

∂(x,v)

)
= 1 for all t > 0 and conclude that if h = 0 then

‖ft‖Lp(R×R) = ‖f0‖Lp(R×R)

for all t > 0 and p > 0.

(c) Show that in the case where h 6= 0 we have that for any t > 0

‖ft‖L∞(R×R) 6 ‖f0‖L∞(R×R) + ‖h‖L∞(R×R) t,

and give an example where equality is attained.

(d) Give an example for h ∈ C1 (R×R× R), and f0 ∈ C1 (R× R) ∩ (∩p>1L
p (R× R))

such that
‖ft‖Lp(R×R) = ∞,

for all t > 0 and p > 1.

(e) Assuming that h 6≡ 0, give additional conditions on h such that the above can’t happen
(not necessary optimal).
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In this question we will show that the phenomena of phase mixing discussed in class
can be improved under additional regularity conditions. For simplicity we will only deal
with the one dimensional case. We will sometimes use the notation ft(x, v) = f(t, x, v).
Consider the transportation equation:

{
∂tf(t, x, v) + v∂xf(t, x, v) = 0 x ∈ T, v ∈ R, t ∈ R

f |t=0 = f0.
(1)

Assume that there exists n ∈ N such that f0 ∈ C1 (T× R) and f0 is 1 + n times
differentiable in its velocity variable. Denote by

‖f0‖L1
xW

1+n,1
v

=
n+1∑

k=0

∫

T

∫

R

∣∣∣∣
∂kf0

∂vk

∣∣∣∣ (x, v)dxdv

and assume that ‖f0‖L1
xW

1+n,1
v

< ∞. Define the following quantities:

ρt(x) =

∫

R

ft(x, v)dv,

ρ∞ =

∫

T

ρ0(x)dx.

Our goal is to show that ρt(x) converges to ρ∞ uniformly.

(a) Show that ρt ∈ L1(R) for all t and that

ρ∞ =

∫

T

ρt(x)dx

for all t ∈ R.

(b) Rewrite equation (1) for f̂(t, k, ξ), k ∈ Z, ξ ∈ R, the Fourier transform of f in its
spatial and velocity variables. Write an explicit solution to the new equation.

(c) Define rt(x) = ρt(x) − ρ∞ ∈ L1 (T). Find the Fourier coefficient of rt, r̂t(k), and
express it only with f̂0.

(d) Use the fact that
∣∣∣f̂
∣∣∣ 6 ‖f‖L1 to show that

sup
k

{∣∣∣f̂0(k, kt)
∣∣∣ |kt|n+1

}
6

‖f0‖L1
xW

1+n,1
v

(2π)n+1 .

(e) Show that there exists C, depending only on n and f0, such that

∑

k

|r̂t(k)| 6
C

|t|n+1 ,

and conclude, using the fact that if f̂ ∈ L1 then ‖f‖L∞ 6

∥∥∥f̂
∥∥∥
L1
, that

lim
t→∞

‖ρt(x)− ρ∞‖L∞(T) = 0,

where the order of convergence is O
(

1
|t|n+1

)
.

Part III, Paper 7 [TURN OVER



4

3

This question is dedicated to the proof of existence and uniqueness of weak
solution to a particular linear Boltzmann equation. We will sometimes use the notation
ft(x, v) = f(t, x, v).
Consider the equation:

{
∂tf(t, x, v) + v · ∇xf(t, x, v) = ρ(f)(t, x)M(v) − f(t, x, v) x, v ∈ R

d, t > 0

f |t=0(x, v) = f0(x, v),
(1)

where

ρ(f)(t, x) =

∫

Rd

ft(x, v)dv.

and M(v) is a non negative function with
∫
Rd M(v)dv = 1. We say that f(t, x, v) is an L1

weak solution to (1) if ft ∈ L1
(
R
d × R

d
)
for any t > 0 and

f(t, x, v) = f0(x− vt, v) +

∫ t

0
(ρ(f)(s, x− v(t− s))M(v) − f(s, x− v(t− s), v)) ds

= F (f0) (t, x, v) + τ(f)(t, x, v).

(2)

with F (f0) (t, x, v) = f0(x− vt, v) and

τ(f)(t, x, v) =

∫ t

0
[ρ(f)(s, x− v(t− s))M(v) − f(s, x− v(t− s), v)] ds.

(a) Assuming that f0 ∈ L1
(
R
d × R

d
)
show that

‖F (f0) (t, ·, ·)‖L1(Rd×Rd) = ‖f0‖L1(Rd×Rd) ,

for all t > 0.

(b) Show that ∫

Rd

|ρ(f)(t, x)| dx 6 ‖ft‖L1(Rd×Rd) ,

and conclude that

‖τ(f)(t, ·, ·)‖
L1(Rd×Rd) 6 2 sup

06s6t
‖fs‖L1(Rd×Rd) t,

for all t > 0.

(c) Show that for all n ∈ N

‖τn(f)(t, ·, ·)‖
L1(Rd×Rd) 6 sup

06s6t
‖fs‖L1(Rd×Rd)

2ntn

n!
,

for all t > 0.

(d) Conclude the existence of an L1 weak solution to (1) when f0 ∈ L1
(
R
d × R

d
)
.
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(e) Show that the L1 weak solution you constructed satisfies:

sup
06s6t

‖fs‖L1(Rd×Rd) < ∞ (3)

for all t > 0

(f) Under the additional condition (3) on L1 weak solutions prove that the L1 weak
solution to (1) is unique.
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The Boltzmann equation is one of the fundamental equation of Kinetic Theory.
Unfortunately, to this day there is no proof of its validity in macroscopic time scales from
Newtonian mechanics. In this question we will present a simplistic version of Kac’s model,
introduced in 1956. Kac’s model is an attempt to create a stochastic many particle linear
model from which, under certain conditions, the Boltzmann equation arises as a limit of
the marginal as the number of the particles goes to infinity.
Consider a non-negative function FN ∈ L2

(
R
N
)
, with N > 1, satisfying

∫

RN

FN (v1, . . . , vN ) dv1 . . . dvN = 1

(i.e. a probability density on R
N that also belongs to L2). Consider the linear operator

QFN (v) =
1(
N

2

)
∑

i<j

1

2π

∫ 2π

0
FN (Ri,j,θ(v)) dθ,

where v = (v1, . . . , vN ) and

Ri,j,θ(v) = (v1, . . . , vi−1, vi(θ), vi+1, . . . , vj−1, vj(θ), vj+1, . . . , vN )

with
vi(θ) = vi cos θ + vj sin θ, vj(θ) = −vi sin θ + vi cos θ.

(a) Show that Q is a bounded self adjoint operator on L2
(
R
N
)
.

Hint: Use the rotation invariance of RN .

(b) Show that

〈FN , (I −Q)FN 〉L2(RN ) =
1

4π

1(
N

2

)
∑

i<j

∫ 2π

0
|FN (Ri,j,θ(v)) − FN (v)|2 dθ

and conclude that Ker (I −Q) is exactly all the L2 function that are radial (i.e. depend
only on |v|).

The N−particle model we study in this question satisfies the evolution equation

∂tFN = N(Q− I)FN FN ∈ L2
(
R
N
)

(1)

which we will call Kac’s master equation.
We will now see how the Boltzmann equation appears from Kac’s model. From this point
onward we will assume that FN is symmetric in its variables, i.e.

FN (v1, . . . , vN ) = FN

(
vσ(1), . . . , vσN

)
,

for any permutation σ of {1, . . . , N}. For 1 6 k < N , define the k−th marginal of FN ,
Πk (FN ), as

Πk (FN ) (v1, . . . , vk) =

∫

RN−k

FN (v1, . . . , vN ) dvk+1 . . . dvN .

Part III, Paper 7



7

(c) Show, assuming that all integration and differentiation is allowed, that the evolution
equation for the first marginal, Π1 (FN ) is given by

∂tΠ1 (FN ) (v1) =
1

π

∫

R

∫ 2π

0
(Π2 (FN ) (v1(θ), v2(θ))−Π2 (FN ) (v1, v2)) dv2dθ (2)

Hint: Use the rotation invariance of RN−1 to cancel a lot of terms in the summation,

and then use the symmetry of FN to simplify the remaining terms.

Equation (2) resembles the spatially homogeneous Boltzmann equation if Π2 (FN ) ≈
Π1 (FN ) ⊗ Π1 (FN ). This is the basis to the definition of chaos in Kac’s model, but
we will leave it for the time being.

(d) Let γN (v) = 1

(2π)
N
2

e−
|v|2

2 be the Gaussian probability density in R
N . Define

HN (FN ) =

∫

RN

FN (v) log

(
FN (v)

γN (v)

)
dv.

Using the fact that the function f(x) = x log x− x+1 is non negative for x > 0 show
that HN (FN ) > 0.

(e) Define the entropy production of FN by

DN (FN ) = −
d

dt
HN (FN ) ,

where FN satisfies (1). Assuming that all differentiation and integration is allowed,
and that all quantities are defined, show that

DN (FN ) =
1

2π(N − 1)

∑

i<j

∫

RN×[0,2π]
(FN (Ri,j,θ(v)) − FN (v)) log

(
FN (Ri,j,θ(v))

FN (v)

)
dvdθ,

which has a definite sign.
Hint: Write

HN (FN ) =

∫

RN

FN (v) log (FN (v)) dv +
N

2
log (2π) +

∫

RN

|v|2 FN (v) dv.

You may use, without proving, that
∫
RN φ(v) (I −Q)FN (v) dv = 0, when φ(v) = 1

and φ(v) = |v|2.

END OF PAPER
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