MATHEMATICAL TRIPOS Part III

Friday, 30 May, 2014 1:30 pm to 3:30 pm

PAPER 64

MEASURE AND IMAGE

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Answer the following questions concerning weak^{*} convergence in $BV(\Omega)$, and the direct method in the calculus of variations.

- (i) Let $\Omega \subset \mathbb{R}^n$ be an open and bounded set with Lipschitz boundary. Characterise weak^{*} convergence in $BV(\Omega)$, and state the criterion for a sequence in $BV(\Omega)$ to admit a weak^{*} convergent subsequence.
- (ii) Provide a proof of the above result (existence of a weak* convergent subsequence). The following Lemma from the lectures can be helpful:

Lemma. Let $\{\rho_{\epsilon}\}_{\epsilon>0}$ be a family of mollifiers, and $w \in BV(\mathbb{R}^n)$ with compact support. Then

$$\int_{\mathbb{R}^n} |(w * \rho_{\epsilon})(x) - w(x)| \, dx \leqslant \epsilon |Dw|(\Omega).$$

(iii) Let $f \in L^1(\Omega)$ on a bounded open domain Ω with Lipschitz boundary. Let $K : L^1(\Omega) \to L^1(\Omega)$ be a bounded linear operator such that K^{-1} is also bounded. Pick $\alpha > 0$. Show that the problem

$$\inf_{u\in \mathrm{BV}(\Omega)} \|f - Ku\|_{L^1(\Omega)} + \alpha |Du|(\Omega),$$

admits a solution, i.e, there exists a function $\hat{u} \in BV(\Omega)$ achieving the infimum value.

UNIVERSITY OF CAMBRIDGE

 $\mathbf{2}$

Answer the following questions concerning the co-area formula in $BV(\Omega)$, and its applications to the ROF denoising problem.

- (i) State the co-area formula for functions of bounded variation.
- (ii) Let $\Omega \subset \mathbb{R}^n$ be open and bounded with Lipschitz boundary, $\alpha > 0$, and $f \in L^2(\Omega) \cap BV(\Omega)$. State and prove the level set formulation of the total variation regularisation problem

$$\min_{u \in BV(\Omega)} \frac{1}{2} \| f - u \|_{L^2(\Omega)}^2 + \alpha TV(u).$$
(1)

The following Lemma from the lectures can be helpful:

Lemma. Suppose $h, g \in L^1(\Omega)$ with g(x) < h(x) for \mathcal{L}^n -almost every $x \in \Omega$. If \hat{E} and \hat{F} solve, respectively

$$\min_{E \subset \Omega} \operatorname{Per}(E; \Omega) - \int_E g(x) \, dx, \quad and \quad \min_{F \subset \Omega} \operatorname{Per}(F; \Omega) - \int_F h(x) \, dx,$$

then $\mathcal{L}^n(\hat{E} \setminus \hat{F}) = 0.$

(iii) Let $\hat{u} \in BV(\Omega)$ solve (1). State the main steps for proving that $\mathcal{H}^{n-1}(J_{\hat{u}} \setminus J_f) = 0$.

3 Answer the following questions about the structure and regularity properties of functions of bounded variation.

- (i) State precisely and prove the Structure Theorem in $BV(\Omega)$.
- (ii) How can Du be decomposed? Define and describe the different components.
- (iii) Let $\Omega = (a, b) \subset \mathbb{R}$, and $u \in BV(\Omega)$. Prove that there exist left- and right-continuous representatives of u, i.e., functions u^l and u^r such that $u^l(x) = u^r(x) = u(x)$ for \mathcal{L}^1 -almost every $x \in (a, b)$, and u^l is left- and u^r right-continuous. Moreover, show that u^l and u^r are discontinuous on at most a countable collection of points.

Hint: Define $u^l(t) := c + Du((a,t))$ for suitable c. Prove that $u^l = u$ almost everywhere in (a,b). In order to prove left-continuity, observe that $\mathcal{H}^{n-1}(S_u \setminus J_u) = 0$ implies that $S_u \subset J_u$ for n = 1.

END OF PAPER