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(a) Let f : ZN → ZN be a periodic function on the integers modulo N , with period r,
and which is one-to-one within each period. Suppose we are given the associated quantum
oracle Uf defined by Uf |x〉 | y〉 = |x〉 | y + f(x) mod N〉 with x, y ∈ ZN . Define the
quantum Fourier transform QFTN and show how r may be determined with probability
O(1/ log logN) by applying at most O(poly(logN)) quantum operations and classical
computational steps. For the quantum operations, the application of Uf , QFTN and
measurements in the basis {| j〉 : j ∈ ZN} are each counted as single operations, and the
only initially available quantum states are instances of the N -dimensional basis state | 0〉.
You may use without proof any results from classical number theory but they must be
stated clearly.

(b) Let Bm denote the set of all m-bit strings. For any f : Bn → B1 let Uf denote the
associated quantum oracle defined by Uf | x〉 | y〉 = | x〉 | y ⊕ f(x)〉 for x ∈ Bn, y ∈ B1

and ⊕ being addition mod 2. For a = a1 . . . an and x = x1 . . . xn in Bn write a · x for
a1x1 ⊕ . . .⊕ anxn.
(i) Suppose we are given the quantum oracle Uf for a function f promised to be of the
form f(x) = a · x for some fixed “hidden” a ∈ Bn. Show that there is a quantum circuit
that uses Uf only once, with the following property: if the input state is a string of qubits
| 0〉 . . . | 0〉 all in state | 0〉 then the output state is | a〉 |A〉 where | a〉 is an n-qubit register
containing the string a and |A〉 is a state of any further qubits used (if needed).

(ii) In a different scenario, suppose now that access to the function f(x) = a · x is
“concealed” by another function g in the following sense: we are given quantum oracles
for two functions f and g, each on 2n bits defined as follows: for any x, y, z ∈ Bn we have

g(x, y) = ay · x and f(z, x) =

{

a · x if z = ax
0 if z 6= ax.

Here a and ay (for y ∈ Bn) are all fixed “hidden” strings. Thus in order to see the value
a · x from the function f we first need to determine the corresponding string ax contained
“hidden” in the operation of the function g.
Suppose we are given quantum oracles Uf and Ug for these two functions. Show that the
string a may be determined with certainty with only two queries to Ug and one query to
Uf (and further quantum operations independent of f and g). [Hint: It may be useful to
consider two n-qubit registers labelled 1 and 2, initialised to the state 1

2n

∑

x,y∈Bn

|x〉
1
| y〉

2

and reconsider the idea of (b)(i).]
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(i) Let | ξ〉 be a quantum state and introduce the operators | ξ〉 〈ξ|, I−| ξ〉 〈ξ| and I−2 | ξ〉 〈ξ|
(where I is the identity operation). Which of these operators are unitary? Give brief
reasons for your answers.

(ii) Let |ψ〉 be a state vector of a quantum system and let G be a subspace of its state
space. In terms of these choices, state the Amplitude Amplification Theorem.

In the following you may assume the Amplitude Amplification Theorem without proof.

(iii) Let Bn denote the set of all n-bit strings and let f : B2 → B1 be a Boolean
function with the promise that f(x) = 1 for a unique x ∈ B2. Suppose we are given the
corresponding quantum oracle Uf whose action is defined by Uf |x〉 | y〉 = |x〉 | y ⊕ f(x)〉
for x ∈ B2, y ∈ B1 (and ⊕ denotes addition mod 2). Show that the unique x with
f(x) = 1 may be found with certainty using only a single query to Uf (and other quantum
operations independent of f).

(iv) Suppose we are given two distinct primes p and q and the product N = pq has n
digits when written in binary. Consider the quantum state

| ξ〉 = 1
√

|A|
∑

k∈A
| k〉

where A = {k : 1 6 k 6 N and k is coprime to N}, and |A| denotes the size of the set A.
Here all integers are written in binary as n-bit strings (adjoining leading higher order bits
set to zero if needed) so | ξ〉 is an n-qubit state. You may assume that |A| = (p−1)(q−1).
Describe how the state | ξ〉 may be prepared with certainty in an n-qubit register, starting
with any required number of qubits each initially in state | 0〉. [Hint: it may be useful
to consider basis states | k〉 of n qubits extended by a single qubit prepared in a suitably
chosen state.]
Can your preparation process be implemented in poly(n) time? Give a brief reason for
your answer.
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Let U be a unitary operation on a d-dimensional state space having the following property:
all eigenvalues of U are distinct and furthermore, each can be written in the form e2πiφ

with 0 < φ < 1 where φ is represented exactly in binary with n binary digits i.e. each φ
has the form y/2n where y = i1i2 . . . in is an n-digit integer when written in binary.
Suppose we are able to implement the controlled-U operation CU |m〉 | ξ〉 = |m〉Um | ξ〉
where m = 0 or 1, and we also have an eigenstate | v〉 of U belonging to some (initially
unknown) eigenvalue e2πiφ.

(i) In terms of CU and | v〉 describe the Phase Estimation Algorithm and explain how it
operates to provide a unitary mapping from which the eigenvalue for | v〉 may be read out.

(ii) Suppose we do not have an eigenstate of U . What is the output of unitary mapping
of the Phase Estimation Algorithm if the eigenstate input is replaced by an arbitrary
d-dimensional state | ξ〉?
(iii) For any given positive integer M let U1/M denote the principalM th root of U defined
to have the same eigenstates as U and corresponding eigenvalues given by e2πiφ/M (where
0 < φ < 1 is as above).
If φ = y/2n with y = i1i2 . . . in in binary, show that

2πφ

M
= i1

2π

2M
+ i2

2π

4M
+ . . . + in

2π

2nM
.

Suppose now that we are given a quantum oracle for CU and for CU−1, the controlled-
(U−1) gate. We also have an exactly universal set of quantum gates available, so in
particular we are able to exactly implement any desired phase gate P (α) = diag(1 eiα).
Explain how we can then implement the gate U1/M on any d-dimensional state | ξ〉. [Hint:
It may be useful to consider the total effect of P (α1)⊗ . . .⊗P (αn) on n qubits in a general
basis state | j1〉 . . . | jn〉.]
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Please see below this question for a list of notations and facts that may be used without
proof in this question.
(a)
(i) Explain how the action of the gate J(α) may be effected on a qubit in state |ψ〉 by
first entangling this qubit with a second qubit and then performing a suitable 1-qubit
measurement.

(ii) Consider the following quantum circuit acting on two qubits (labelled 1 and 2) prepared
initially in state | 0〉

1
| 0〉

2
: apply J1(α), then E12, then J2(β). Finally measure qubit 2 in

the computational basis to obtain a single output bit b2. Describe (with brief explanations)
how this quantum circuit may be simulated by performing a (possibly adaptive) sequence of
single qubit measurements on a suitable graph state, combined with classical deterministic
processing of the measurement outcomes.

(b) In a laboratory we wish to implement a circuit C of J(α) and E gates containing k
J(α) gates. The laboratory is able to perform E gates exactly but, due to difficulties with
continuous variables, for each J(α) gate, the actual implemented gate is J(α′) for some α′

with |α′ − α| < η.
If |ψin〉 is the input state let |ψout〉 = C |ψin〉 denote the output state of the exact
circuit, and let |ψ′

out〉 denote the output state of the implemented circuit. We require
that || |ψout〉 − |ψ′

out〉 || < ǫ (where || | ξ〉 || denotes the usual vector length). Determine
a (non-zero) bound on η that suffices to guarantee the required condition on the output
state.

Notations and facts for question 4

Quantum gates: (matrices relative to the computational basis)

J(α) =
1√
2

(

1 eiα

1 −eiα
)

X =

(

0 1
1 0

)

Z =

(

1 0
0 −1

)

.

Two qubit gate: E = | 0〉 〈0 | ⊗ I + | 1〉 〈1 | ⊗ Z
(where I denotes the identity operation).
Subscripts on gate names denote the qubits to which they are applied.
Single qubit states: |α±〉 = 1√

2
(| 0〉 ± e−iα | 1〉).

You may assume the following commutation relations:

Ji(α)X
s
i = e−isαZs

i Ji((−1)sα)
Ji(α)Z

s
i = Xs

i Ji(α)
EijX

s
i = Xs

i Z
s
jEij

EijZ
s
i = Zs

iEij. �

END OF PAPER
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