

MATHEMATICAL TRIPOS Part III

Wednesday, 4 June, 2014 9:00 am to 12:00 pm

PAPER 6

FUNCTIONAL ANALYSIS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Throughout this question work with real scalars.

What is meant by a *locally convex space*? Define the topology of a locally convex space. [You do not need to verify that this is a topology.]

Define the dual space X^* of a locally convex space X and prove that it separates the points of X. [No version of the Hahn–Banach theorem can be assumed without proof.]

Let Y be a closed subspace of a locally convex space X, and let $x_0 \in X \setminus Y$. Show that there exists $f \in X^*$ with $f(x_0) = 1$ and f(y) = 0 for all $y \in Y$.

$\mathbf{2}$

Throughout this question X is a real Banach space and you are free to use any version of the Hahn–Banach theorem (both extension and separation theorems) without proof.

(i) Define the w^* -topology on the dual space X^* . State Goldstine's Theorem.

(ii) Let *E* be a finite-dimensional subspace of X^* , let $x^{**} \in X^{**}$ with $||x^{**}|| \leq 1$, and let $\varepsilon > 0$. Prove that there is an $x \in X$ such that $||x|| < 1 + \varepsilon$ and $x^{**}(e) = e(x)$ for all $e \in E$. Briefly explain how to use this result to prove Goldstine's Theorem.

(iii) Let Y be a closed, finite-codimensional subspace of X^* . Briefly explain how to find finitely many elements $\phi_1, \phi_2, \ldots, \phi_n$ of X^{**} such that $Y = \bigcap_{k=1}^n \ker \phi_k$. Set $F = \operatorname{span} \{\phi_1, \phi_2, \ldots, \phi_n\}$ and assume that Y is w^* -dense in X^* . Show that $F \cap X = \{0\}$. (Here we identify X with its canonical image in X^{**} .) Show that for some c > 0, Y is *c*-norming for X:

$$c||x|| \leq \sup\{x^*(x) : x^* \in Y, ||x^*|| \leq 1\} \quad \text{for all } x \in X.$$

[*Hint: First show that the distance d between* S_X (the unit sphere of X) and F is positive:

 $d = d(S_X, F) = \inf\{ \|x - \phi\| : x \in S_X, \ \phi \in F \} > 0 .$

Given $x \in S_X$, apply (ii) to $E = span(F \cup \{x\})$ and a suitable functional on X^{**} to show that c = d works.]

(iv) Show that a subspace Z of X^* that is c-norming for X for some c > 0 is necessarily w^* -dense in X^* . Give an example of a Banach space X and a closed subspace Z of X^* that is 1-norming for X and has infinite codimension in X^* .

UNIVERSITY OF

3

Throughout this question K is a compact Hausdorff space, and C(K) is the Banach space of continuous complex-valued functions on K with the uniform norm.

State the Riesz Representation Theorem. Explain very briefly how to deduce a characterization of the dual space of C(K).

Let X be a complex Banach space, and let C be a non-empty, w^* -compact, convex subset of the dual space X^* . Define what is meant by an *extreme point of* C. State the Krein-Milman Theorem for C. Assume that $S \subset C$ and the w^* -closure of the convex hull of S is C. Prove that the w^* -closure of S contains all extreme points of C. [The Hahn-Banach separation theorems may be used without proof.]

Identify with proof the set of extreme points of the closed unit ball of $C(K)^*$. [You may use without proof any fact about faces of w^* -compact, convex sets.]

Let F be a finite-dimensional subspace of C[0, 1]. Given a complex, Borel measure μ on [0, 1] with $\|\mu\|_1 = 1$, and given $\varepsilon > 0$, show that there exist $N \in \mathbb{N}$, $w_1, w_2, \ldots, w_N \in [0, 1]$, and complex numbers t_1, t_2, \ldots, t_N with $\sum_{i=1}^N |t_i| = 1$ such that

$$\left|\int_0^1 f \,\mathrm{d}\mu - \sum_{i=1}^N t_i f(w_i)\right| \leqslant \varepsilon ||f|| \quad \text{for all } f \in F \;.$$

 $\mathbf{4}$

Let A be a complex, unital, commutative Banach algebra. Let $x \in A$ and U be an open subset of \mathbb{C} that contains the spectrum $\sigma(x)$ of x. Show that there is a unique, continuous, unital algebra homomorphism $\Theta_x \colon \mathcal{O}(U) \to A$ such that $\Theta_x(u) = x$, where $u \in \mathcal{O}(U)$ is the function u(z) = z, $z \in U$. Show further that for each $f \in \mathcal{O}(U)$ we have $\sigma(\Theta_x(f)) = \{f(\lambda) : \lambda \in \sigma(x)\}$. [You may assume standard results from complex analysis and vector-valued integration as well as elementary properties of invertible elements and elementary spectral theory in Banach algebras. You may also assume Runge's approximation theorem provided it is clearly stated.]

Let X be a Banach space and $T: X \to X$ be a bounded linear map. Assume that the spectrum of T is disconnected. Show that there is a proper, non-trivial closed subspace Y of X that is invariant under T, *i.e.*, $Ty \in Y$ for all $y \in Y$. [*Hint: Find a projection* $P: X \to X$ that is not zero or identity with PT = TP.]

Part III, Paper 6

[TURN OVER

UNIVERSITY OF

4

 $\mathbf{5}$

Let A be a complex commutative, unital Banach algebra.

What is a *character* on A? Show that characters on A are continuous. [You may assume results about invertible elements.]

Define the spectrum Φ_A of A. Define the Gelfand topology of Φ_A , and prove that Φ_A is compact in the Gelfand topology. Show also that the spectrum of $x \in A$ is $\sigma(x) = \{\phi(x) : \phi \in \Phi_A\}$. [You may assume results about the w^* -topology and the Gelfand-Mazur Theorem about normed division algebras.]

Now let A be a commutative, unital C^* -algebra. Show that the spectral radius of $x \in A$ is r(x) = ||x||. Show also that $\phi(x^*) = \overline{\phi(x)}$ for any $x \in A$ and $\phi \in \Phi_A$. [You may assume the spectral radius formula and other results from elementary spectral theory.]

State and prove the Gelfand–Naimark Theorem.

END OF PAPER