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A planet of mass M and density ρ orbits a star of mass M⋆ at a constant distance
a. Find the semimajor axis as of planet-synchronous orbits, which are circumplanetary
orbits with an orbital period equal to the planet’s rotation period P , and comment on
why such orbits are favoured for Earth’s communications satellites.

Show that such orbits are possible providing that

√

3π

ρG
< P <

√

4π2a3

3GM⋆
,

where G is the gravitational constant.

The inhabitants of the planet start launching spherical satellites of radius r onto
planet-synchronous orbits with randomly oriented orbital planes and small eccentricities
e. Show that the mean time between collisions amongst a population of Ns such satellites
is AN−2

s , where

A = P
e

4

(as
r

)2

.

Comment on how this collision timescale would be affected if the satellites had been
launched onto near planet-stationary orbits, prograde orbits with small mean inclinations
I from the planet’s equator, where 1 ≫ I ≫ e?

If the satellite population grows linearly at a rate R, show that the first satellite
collision is likely to occur when the number of satellites reaches Ns0 = (3AR)1/3.

Two of the satellites collide at the time determined above at which point no more
satellites are launched. The collision destroys both objects with their mass redistributed
into spherical fragments of radius xr, where x ≪ 1. Assume the fragments’ orbits to have
the same isotropic distribution to that of the rest of the satellite population. Determine
the conditions on x and Ns0 for the next collision amongst the populations of satellites
and fragments to be expected to occur between two fragments.

Fragment-fragment collisions can be assumed to remove the mass of both fragments
from the system, while fragment-satellite collisions remove the fragment’s mass but break
the satellite into fragments of radius xr. Show that

Ṅf = A−1[2x−3N2
s + x−3NfNs/4− x2N2

f ],

where Nf and Ns are the number of fragments and satellites respectively, and find the
corresponding expression for Ṅs.

Assuming that satellite-satellite collisions can be ignored, discuss how the fragment
population evolves, quantifying where possible.
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Consider a source on a circular orbit at a distance of a from a star of mass M⋆. A
particle created by the source is given a velocity of γvk (on top of the Keplerian velocity
of the source vk) in a direction that is at an angle θ to the motion of the source in its
orbital plane. Show that the semimajor axis a′ of the particle’s orbit is given by

a′/a = (1− 2γ cos θ − γ2)−1.

Find the corresponding expression for the particle’s eccentricity e′, and show that
its minimum possible value is

min(e′) = γ

√

1−
γ2

3
+

γ4

27
,

which occurs at cos θ = −γ/3.

Particles are created with θ randomly distributed between 0 and 2π. Sketch the
distribution of particle orbits on a plot of e′ versus a′/a, quantifying the locations of any
extrema in this distribution.

If ̟′ is the longitude of the particle’s orbit relative to the point at which it was
created, show that

e′ cos̟′ = (2 + γ cos θ)γ cos θ.

Particles placed on orbits that are close to mean motion commensurabilities (i.e.,
where the orbital periods are a ratio of two integers) are susceptible to close encounters
with the source. If a close enounter is defined as the particle coming within a distance ∆ of
the source, show that the fraction of particles placed on orbits that have close encounters
with the source due to the 1:1 mean motion commensurability is given by

∆

6π2aγ
√

1− γ2/4
.

Sketch the orbits of particles in the frame rotating with the source for γ ≪ 1 and
for θ = 0, π, π/2.
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A test particle orbits a star of mass M⋆ with a semimajor axis a, eccentricity e and
longitude of pericentre ̟. The particle’s orbital plane is the same as that of a planet of
mass Mpl ≪ M⋆ which is on a circular orbit interior to that of the particle at a distance
apl from the star. The particle is close to the p + q : p resonance for which the resonant
argument is φ = (p + q)λ − pλpl − q̟, where p and q are integers, q 6 2, and λ and λpl

are the mean longitude of the particle and planet respectively. Identifying terms in the
disturbing function involving φ as well as secular terms up to second order in e, Lagrange’s
planetary equations give for the evolution of the particle’s orbital elements

ȧ = −2(p + q)eqaCr sinφ,

ė = −qeq−1Cr sinφ,

˙̟ = 2Cs + qeq−2Cr cosφ,

where Cr and Cs are both positive constants that are ∝ Mpl/M⋆. What conditions must
hold for these equations to provide a good description of the particle’s motion?

Ignoring changes in mean longitude at epoch, derive the full equation of motion for
φ̈ and show that there are two fixed points at φ = 0, π.

Give physical reasons for which of these points is stable both for q = 1 and q = 2.

The particle starts at φ = π + ∆φ with φ̇ = 0, where ∆φ ≪ 1. Show that the
particle’s semimajor axis is at approximately

ar

[

1−
2

3pnpl

(

2qCs − q2Cre
q−2

)

]

,

where ar is the nominal location of the resonance and npl is the mean motion of the planet.

Ignoring terms that are second order or higher in small quantities, derive expressions
for the time evolution of φ, a, e and ̟.

Sketch the motion on plots of φ̇ versus φ and e versus a, quantifying where possible.

Consider now the case where ∆φ is no longer small. Show that

E =
1

2
φ̇2 + 2ω2

0 sin
2

(

φ− π

2

)

is a constant, where ω0 should be determined.

With the aid of a plot of φ̇ versus φ describe how the particle’s motion changes as
∆φ approaches π.
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Secular interactions cause the complex eccentricities of a coplanar two planet system
to evolve according to

ż = iAz, (∗)

where z = [z1, z2], zj = ej exp i̟j is the complex eccentricity of the j-th planet, ej and
̟j are the eccentricity and longitude of pericentre of the j-th planet, and A is a matrix
with positive diagonal elements A11 and A22, and negative off-diagonal elements A12 and
A21. Show that the two eigenvalues of A are

λp =
1

2
[A11 +A22 +

√

(A11 −A22)2 + 4A12A21],

λm =
1

2
[A11 +A22 −

√

(A11 −A22)2 + 4A12A21].

Show that the solution to equation (∗) can be written

zj = ejp exp i(φjp + λpt) + ejm exp i(φjm + λmt),

where ejp exp i(φjp) and ejm exp i(φjm) are constants set by the initial conditions, and
derive the following relations

e1p/e2p = (A22 − λp)/A21,

φ1p = φ2p + π,

e1m/e2m = (λm −A22)/A21,

φ1m = φ2m.

The planets start at ̟1 = 60◦ and ̟2 = 150◦, with φ1p = 30◦ and φ1m = 120◦.
Sketch their location in the complex eccentricity plane, showing the combination of the
modes associated with the two eigenvalues, and describe how their complex eccentricities
evolve.

Given that A12/A21 ≈ L1/L2, where Lj is the angular momentum in the j-th planet,
show that

(e1p/e2p)(e1m/e2m) = L1/L2.

If tides act to reduce the eccentricity of planet 1 according to

ė1 = −e1/τ,

where τ is a constant timescale that is large compared with secular timescales (i.e.,
τ ≫ 1/λm), show that the evolution of the complex eccentricities of this system can
still be written in the form of equation (∗) but with a revised matrix A′.

Find the eigenvalues of A′ and describe how tides affect the evolution of the complex
eccentricities of the two planets.
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