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1 Photoevaporation of a protoplanetary disk

The ideal gas in the surface layer of a thin disk becomes irradiated by its central
star so that it attains a temperature of 104 K, which corresponds to a sound speed c ≈ 10
km s−1. You may assume that such gas is in circular Keplerian orbits while this occurs.

(a) At the gravitational radius rg the sound speed of the gas in the surface layer
equals its orbital speed. Show that rg = GM/c2, and explain why the gas beyond this
radius is gravitationally unbound and may leave the disk in a wind. (Here M is the mass
of the star.)

If M� ∼ 2 × 1033 g, G ∼ 7 × 10−8 cm3 g−1 s−2, and 1 AU ∼ 1013 cm, give an
estimate for rg in the protosolar nebula (in AU).

(b) Mass and angular momentum conservation in the photoevaporated disk are
governed by the equations

∂Σ

∂t
=

1

2πr

∂Facc

∂r
−W, Facc = 6πr1/2

∂

∂r

(
r1/2νΣ

)

where Facc is the radial mass accretion rate and W is the mass loss rate due to the
photoevaporative wind. A functional form for W is

W =

{
0, r < rg,

W0 (r/rg)−5/2,, r > rg,

for W0 a constant ∼ 10−12 g cm−2 s−1.

Show that the total mass loss rate from the disk due to the wind is Ṁw = 4πW0r
2
g .

Hence give an estimate for the dispersal time, in years, of a protosolar nebula with initial
mass 10−3M�.

(c) Consider a steady state scenario in which mass is fed into the disk at a radius
� rg at a rate Ṁd > Ṁw. Obtain an expression for Facc in terms of Ṁd, Ṁw, and rg,
then sketch its form as a function of r. Give a physical reason for its shape.

Compute the corresponding surface density profile Σ for fixed ν, assuming there is
no viscous stress at the surface of the star (which we may assume is at r = 0). Sketch the
form of Σ for the special case Ṁd = Ṁw.

Discuss what might happen to the inner disk at late times when the wind mass-loss
rate approaches the accretion rate.
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2 Gravitational instability in a layer of dust

The dynamics of a 2D layer of dust in a gaseous accretion disk can be modelled in
the shearing sheet approximation via the following equations

∂tσ + v · ∇σ = −σ∇ · v,

∂tv + v · ∇v + 2Ωez × v = −∇Φt −∇Φsg −
1

σ
∇P − εΩ(v −Ug).

Here σ, v, P , and Φsg denote the surface density, 2D velocity, vertically integrated pressure,
and gravitational potential of the dust, while Φt = −(3/2)Ω2x2 is the tidal potential,
Ug = (−3/2)Ωx ey is the velocity of the disk’s gas, and ε measures the strength of the
gas drag. We assume that the dust does not alter the motion of the gas. Finally, Φsg can
be obtained from Poisson’s equation

∇2Φsg = 4πGσ δ(z),

and the dust pressure from P = c2σ, where c is the rms speed of the dust particles.

(a) Consider small axisymmetric perturbations σ′, v′, Φ′
sg around the equilibrium

v = Ug with σ = σ0 a constant. Assuming the perturbations are ∝ eikx+st, derive the
following dispersion relation:

s3 + 2s2εΩ + (ω2 + ε2Ω2)s+ εΩ(ω2 − Ω2) = 0,

where
ω2 = Ω2 − 2πGσ0|k|+ c2k2.

You may assume that for such disturbances, Φ′
sg = −(2πG/|k|)σ′.

(b) Show that when the dust particles decouple from the gas (ε = 0), the dust
is unstable when ω2 < 0. Confirm that instability is assured when Q < 1, where
Q = cΩ/(πGσ0).

(c) Suppose ω2 > 0 and that the particles are only weakly coupled to the gas, i.e.
0 < ε� 1. By making an expansion s = s0 + s1ε+ . . . , show that there exist two density
waves that are weakly damped.

(d) For small ε, the third ‘secular’ mode has an expansion s = s1ε + O(ε2). Show
that this mode grows when ω2 < Ω2. Hence demonstrate that the dust is always unstable
for sufficiently small k.

(e) If the dust layer has radial extent L, derive the rough instability criterion
Q . L/H, where H = c/Ω is the scale height.

(f) Suppose the background fluid flow is turbulent. How do you think this will alter
the onset of instability?
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3 The vertically stratified MRI

A fully ionised gas in the vertically stratified shearing sheet obeys the momentum
and induction equations,

∂tv + v · ∇v + 2Ωez × v = −∇Φt −
1

ρ
∇Ψ +

B · ∇B

4πρ
,

∂tB + v · ∇B = B · ∇v − (∇ · v)B,

where Φt = −(3/2)Ω2x2 + (1/2)Ω2z2 is the tidal potential and Ψ is the combined gas
and magnetic pressure. Suppose the box is penetrated by a uniform magnetic field B0ez,
and exhibits a vertical density profile of ρ = ρ0h, where ρ0 is the midplane density and
h = h(z/H) is a dimensionless function and H is the disc scale height. The equilibrium
velocity is v0 = −(3/2)Ωxey.

The equilibrium state is perturbed by a disturbance of the following form

v′ = est F
(
v′x, v

′
y, 0
)
,

B′ = B0 est
(

1

ik

dF

dz

) (
b′x, b

′
y, 0
)
,

where v′x, v′y, b′x, and b′y are (complex) constants, F = F (z/H) is a (real) dimensionless
function, bounded on the surface of the disk, and k is a (real) wavenumber. We do not
perturb the density or pressure.

(a) By determining the solvability condition for the horizontal components of the
linearised momentum and induction equation, show that if F satisfies

d2F

dz2
+ k2 hF = 0 (∗∗)

then we recover the incompressible MRI dispersion relation

s4 + (Ω2 + 2v2Ak
2)s2 + v2Ak

2(v2Ak
2 − 3Ω2) = 0,

where vA = B0/
√

4πρ0.

(b) Suppose the vertical structure of the disk is given by h = sech2(z/H). Verify
that Eq. (∗∗) admits discrete solutions

Fn = Pn[tanh(z/H)], kn =
√
n2 + n/H,

where Pn is a Legendre polynomial of integer order n. Hence show that the MRI is
stabilised when β < 4/3, where β = 2Ω2H2/v2A. Give a physical explanation for why the
disk is stabilised for sufficiently strong magnetic fields.

(c) If β = 24 what is n for the fastest growing mode?

[ Hint: The Legendre equation is

d

dξ

[
(1− ξ2)dF

dξ

]
+ λF = 0

and admits solutions that are bounded at ξ = ±1 if λ = n(n+ 1). These solutions are the
Legendre polynomials, Pn. ]
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