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1

Define a Poisson structure on an open set U ⊂ R
2n in terms of an anti-symmetric

matrix ωab : U → R
2n where a, b = 1, . . . , 2n, and show that the Jacobi identity implies

2n
∑

d=1

(

ωdc
∂ωab

∂xd
+ ωdb

∂ωca

∂xd
+ ωda

∂ωbc

∂xd

)

= 0.

Assume that ωab is invertible, and demonstrate that the corresponding symplectic two-
form is closed as a consequence of the Jacobi identity.

2

Consider a Lie group G of upper triangular matrices of the form

g =





1 x z
0 1 y
0 0 1





and construct its Lie algebra g.

Construct explicitly the most general right invariant metric h on G and show that
the isometry group of (G,h) contains G. Find expressions for three Killing vector fields
generating g.

Now assume that h is diagonal in the basis of right-invariant one-forms and put h
in the Kaluza–Klein form

h = V (dx+A)2 + γ

with respect to the Killing vector ∂/∂x, where the function V , the one-form A and the
metric γ should be determined.

3

Write an essay on a Chern number and Chern–Simons three-form.
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4

Consider a flat Euclidean metric on R
4

g = dzdz̄ + dwdw̄

with the volume form dw ∧ dz ∧ dw̄ ∧ dz̄, where (w, z) ∈ C
2.

Show that the space Λ2
+(R

4) is spanned by real two-forms ω1, ω2, ω3, where

ω1 + iω2 = dw ∧ dz, ω3 = i(dw ∧ dw̄ + dz ∧ dz̄)

and deduce that in these coordinates the anti-self-dual Yang–Mills (ASDYM) equations
are

Fwz = 0, Fww̄ + Fzz̄ = 0, Fw̄z̄ = 0,

where

F = dA+A ∧A =
1

2
Fab dy

a
∧ dyb

is a real two-form with values in a Lie algebra g, and ya = (w, z, w̄, z̄).

Use the first two equations to deduce the existence of a complex gauge such that

Aw = 0, Az = 0, Aw̄ = ∂zK, Az̄ = −∂wK

where K = K(w, z, w̄, z̄) is a g-valued function on R
4 and thus reduce ASDYM to a single

PDE for the function K.
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