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This question is about real and functional analysis concepts introduced and used in
the lectures.

(a) Give two definitions of real analyticity of a function defined on the real line, first in
terms of the convergence of the Taylor series, second in terms of the growth on the
derivatives, and prove their equivalence.

(b) Give an example of a function which is smooth but not real analytic on R (justify
entirely the answer).

(c) State the Liouville theorem for analytic functions in the complex plane. Is a similar
statement satisfied for real analytic functions on R?

(d) Give the definition of being separable for a Hilbert space, and show that the space
L2
loc
(R) (functions square integrable on any compact interval) endowed with the inner

product 〈f, g〉 = limR→∞
1
R

∫

R

−R
f(x)g(x) dx defines a non-separable Hilbert space.

(e) State and prove the existence and uniqueness of a projection on a closed non-empty
convex subset of a Hilbert space.

(f) State and prove the Riesz representation theorem.

(g) State and prove the Lax–Milgram theorem.
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This question is about heat, Laplace and wave equations.

(a) Consider the heat equation ∂tu = ∂2
xu in R × R. Show that the line {t = 0} is

characteristic and that there does not exist an analytic solution u in a neighborhood
of (0, 0) with u = (1 + x2)−1 on {t = 0}.

(b) Give the formula for the wave and Schrödinger and Laplace equations and their
characteristic hypersurfaces.

(c) Prove the elliptic regularity principle for the Laplace equation in a smooth bounded
connected domain U ⊂ R

ℓ, ℓ > 2.

(d) Formulate the Cauchy problem for the Laplace equation. Assuming that the Cauchy
data are real analytic on some real analytic Cauchy hypersurface Γ ⊂ U , can we apply
the Cauchy–Kowelevskaia theorem?

(e) Assuming that the Cauchy data are C2 but not C3 on Γ, can we apply Cauchy–
Kowalevskaia’s theorem? Is there any C2 solution locally around Γ?

(f) Consider the wave equation with smooth Cauchy data on the hypersurface {t =
0} × R

n. State and prove the key “a priori estimate” seen in the lectures in the
whole space domain R

n.

(g) State and prove the stronger local version of the previous a priori estimate, and prove
as a consequence that if the Cauchy data has compact support, then the solution has
compact support on each time slice. How fast can the support spread out in time?
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This question deals with solving elliptic equations. We consider in this whole
question a domain U ∈ R

ℓ, ℓ > 1, smooth, bounded and connected.

(a) Consider the Neumann problem of the Poisson equation

−∆u = f in U

∇xu · n(x) = 0 in ∂U

with f a smooth function on U and where n(x) is the outgoing normal vector. We say
that u is a weak solution to this problem if u ∈ H1(U) and

∀ v ∈ H1(U),

∫

U

∇u · ∇v dx =

∫

U

fv dx.

(i) Prove that (1) if u is a weak solution and u is smooth on Ū then u is a classical
solution, and (2) that a classical C2 solution is a weak solution.

(ii) Prove that the weak solution is unique up to the choice of a constant.

(iii) Prove the Neumann-Poincaré inequality

∀ v ∈ H1(U),

∫

U

(v −m[v])2 dx 6 CP

∫

U

|∇xv|
2 dx, m[v] :=

∫

U

v dx

for some constant CP > 0.

[Hint. Argue by contradiction and use the Rellich–Kondrachov theorem in the

form that a sequence bounded in H1(U) is compact in L2(U). ]

(iv) Prove the existence of a weak solution as soon as
∫

U
f dx = 0 by following the

Hilbert analysis strategy we have used for the Dirichlet problem.

(v) Prove that the previous condition on f is necessary for the existence of a weak
solution.

(b) Consider the following boundary-value problem

∆2u = f in U

u = ∇xu · n(x) = 0 on ∂U

with f a smooth function on U and where n(x) is the outgoing normal vector. We say
that u is a weak H2

0 solution to this problem if u ∈ H2
0 (U) and

∀ v ∈ H2
0 (U),

∫

U

∆u∆v dx =

∫

U

fv dx.

(i) Prove that (1) if u is a weak solution and u is smooth on Ū then u is a classical
solution, and (2) that a classical C4 solution is a weak solution.

(ii) Prove that the weak solution is unique.

(iii) Prove the existence of a weak solution by following the Hilbert analysis strategy
we have used for the Dirichlet problem.

[Hint: Use both the Dirichlet–Poincaré inequality proved in lectures and the

Neumann–Poincaré inequality proved above.]
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This question deals with the vanishing viscosity approximation of the nonlinear
transport equation.

(a) Consider the equation

∂tu+ ∂xF (u) = ǫ∂2
xxu, x ∈ R, t ∈ (0,+∞) (1)

with ǫ > 0 and F a C2 function on R with F ′ bounded.

(i) Arguing a priori, i.e. assuming the existence of a global smooth solution uǫ
decaying at infinity faster than any polynomials, perform energy estimates to
establish the following estimate on the L2 norm

∀ t > 0,

∫

R

uǫ(t, x)
2 dx 6 eC0t

(
∫

R

uǫ(0, x)
2 dx

)

and provide a formula for bounding above the constant C0 in terms of F and ǫ.

(ii) Arguing a priori as in the previous question, perform energy estimates to
establish the following estimate on the L2 norm of the first derivative

∀ t > 0,

∫

R

(∂xuǫ(t, x))
2 dx 6 eC1t

(
∫

R

(∂xuǫ(0, x))
2 dx

)

and provide a formula for bounding above the constant C1 in terms of F and ǫ.

(iii) How does these constants C0 and C1 behave as ǫ → 0? Can you relate it to the
behavior of the solution when ǫ = 0.

(b) Consider again the equation

∂tu+ ∂xF (u) = ǫ∂2
xxu, x ∈ R, t ∈ (0,+∞) (2)

with ǫ > 0, but now with F a C2 uniformly convex function on R.

(i) Prove that if uǫ(t, x) = v(x−σt) is a travelling wave solution for some C2 function
v on R and σ ∈ R, then v satisfies the implicit formula

∀ s ∈ R, s =

∫

v(s)

c

ǫ

F (z)− σz + b
dz

for some constants b, c ∈ R.

(ii) Assuming that v converges to ul (resp. ur) at z → −∞ (resp. z → +∞), prove
that the travelling wave speed σ satisfies

σ =
F (ul)− F (ur)

ul − ur
.

(iii) Assuming ul > ur and the existence of the solution uǫ(t, x) = v(x−σt) described
in parts (a)-(b) of this question, describe the limit limǫ→0 uǫ and explain your
answer.
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