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The metric for a homogenous and isotropic FRW spacetime is

ds2 = dt2 − a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]

,

where a(t) is the scale factor and k parameterises spatial curvature. The evolution of the
scale factor is determined by the Friedmann equation

H2 =
8πG

3

∑

i

ρi(a)−
k

a2
,

where H = ȧ/a is the Hubble parameter and ρi denote the relevant energy densities
(matter, radiation, etc.).

i) Consider a curved FRW universe filled with a single fluid with constant equation of
state w = P/ρ.

Derive the evolution equation for the fluid density ρ from the first law of thermo-
dynamics. Hence, or otherwise, show that

dΩk

d ln a
= (1 + 3w)Ωk(1− Ωk) , where Ωk(a) ≡ − k

(aH)2
.

Use this result to explain the flatness problem of the standard Big Bang cosmology. [10]

ii) Now, consider a flat FRW universe with present radiation density Ωr,0 ≡ 8πGρr,0/(3H
2
0 )

and matter density Ωm,0 = 1− Ωr,0.

Write the Friedmann equation in conformal time, dτ = dt/a(t), using the Hubble
constant H0 ≡ H(τ0) and setting the scale factor today equal to unity, a(τ0) ≡ 1.
Show that the equation is solved by

a(τ) = Aτ2 +Bτ ,

where the constants A and B should be determined.

For Ωr,0 ∼ 10−4, calculate the angular scale subtended by the causal horizon at
matter-radiation equality. Justify any approximations you make.

Given that recombination happens shortly after matter-radiation equality, explain
the horizon problem of the standard Big Bang cosmology. [10]
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The distribution function for massless neutrinos is

fν(p) =

[

exp

(

p− µν

Tν

)

+ 1

]−1

,

where Tν is the neutrino temperature and µν is the chemical potential. A neutrino species
with |µν | ≫ Tν is called degenerate.

i) Show that the energy density of degenerate neutrinos is

ρν ≈ |µν |4
8π2

,

where µν ∝ Tν in thermal equilibrium. What is the contribution of the correspond-
ing anti-neutrinos? [6]

ii) Derive a bound on µν/Tν from the requirement that the present energy density in
degenerate neutrinos doesn’t exceed the critical density, ρcrit = 6 × 103 T 4

0 , where
T0 is the present CMB temperature. [8]

iii) Discuss qualitatively how degenerate neutrinos would affect the production of
primordial helium. [6]
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The position q(t) of a one-dimensional harmonic oscillator has the following action

S =
1

2

∫

dt
[

q̇2 − ω2q2
]

,

where the overdot denotes a derivative with respect to time t. The position operator can
be written as

q̂(t) = q(t)â+ q∗(t)â† ,

where qq̇∗− q̇q∗ ≡ i and [â, â†] = 1 (in units where ~ ≡ 1). The vacuum state |0〉 is defined
through â|0〉 = 0. Write the mode function as q(t) = r(t)eis(t), where r(t) and s(t) are
real functions of time.

Derive the form of the mode function for which 〈0|Ĥ |0〉 is minimised, where Ĥ is
the Hamiltonian. [Hint: Remember that the functions r(t) and s(t) are constrained by the
normalisation of q(t).] Compute the vacuum expectation value 〈|q̂|2〉 ≡ 〈0|q̂†q̂|0〉. [10]

Now, consider the quadratic action for the comoving curvature perturbation R
during slow-roll inflation

S =
1

2

∫

dτd3x z2
[

(R′)2 − (∂iR)2
]

, z2 ≡ 2a2ε ,

where the prime denotes a derivative with respect to conformal time τ , a(τ) is the scale
factor of the FRW metric and ε ≡ −Ḣ/H2 is the slow-roll parameter.

Write the action in terms of the field v ≡ zR and derive the equation of motion for the
Fourier mode vk(τ), for the case that the spacetime can be approximated by the de Sitter
solution a ≈ −(Hτ)−1, with H ≈ const.

With reference to the first part of the question, explain the definition of the Bunch-Davies
(BD) vacuum. Show that the mode function corresponding to the BD vacuum in de Sitter
space is

vk(τ) =
e−ikτ

√
2k

(

1− i

kτ

)

.

Determine the power spectrum of curvature perturbations in the superhorizon limit,
PR(k) ≡ limkτ→0 |Rk(τ)|2. [10]
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Consider scalar perturbations in a flat universe dominated by a perfect fluid with constant
equation of state w = P/ρ > 0. The perturbed Robertson–Walker line element is

ds2 = a2(τ)
[

(1 + 2Φ)dτ2 − (1− 2Φ)δijdx
idxj

]

,

where τ is conformal time and a(τ) ∝ τ2/(1+3w) is the scale factor. The linearized Einstein
equations are

∇2Φ− 3H
(

Φ′ +HΦ
)

= 4πGa2ρ̄δ , (1)

Φ′ +HΦ = −4πGa2(ρ̄+ P̄ )v , (2)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2 δP , (3)

where primes denote derivatives with respect to τ , overbars denote homogeneous back-
ground quantities, δ ≡ δρ/ρ is the fractional density perturbation, δP is the pressure
perturbation, ∂iv is the peculiar velocity and H ≡ a′/a.

Show that

Φ′′ +
6(1 + w)

1 + 3w

1

τ
Φ′ − w∇2Φ = 0 .

Find the solution for a single Fourier mode, Φ(k, τ), for the case of a radiation fluid (w = 1
3)

and for a pressureless matter fluid (w = 0). In each case, discuss the evolution when the
mode is inside and outside the Hubble radius. [10]

[Hint: You may use that the solutions to Bessel’s equation,

d2u

dx2
+

2

x

du

dx
+

(

1− 2

x2

)

u = 0 ,

are j1(x) = x−2(sinx− x cos x) and n1(x) = −x−2(cos x+ x sinx).]

The real universe can be modelled as a mixture of radiation (r) and cold dark
matter (c). Assume scale-invariant initial conditions for Φ.

i) Sketch the solutions k3/2Φ(k, a) for three different Fourier modes: k ≫ Heq,
k ≪ Heq and k ∼ Heq, where Heq ≡ H(τeq) is the Hubble rate at matter-radiation
equality. [2]

ii) In the matter-dominated era, determine how the growing mode of the dark matter
density contrast δc evolves inside the Hubble radius. Sketch the solutions k3/2 δc(k, a)
for the same three Fourier modes as in part i). [4]

iii) Sketch the dark matter power spectrum, Pδc(k, z) ≡ |δc(k, z)|2, at redshift z = 1.
Explain the k-scaling for k > Heq and k < Heq. [4]
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