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Define the 4× 4 matrix B to be one which transforms the Dirac matrices as follows

Bγµ∗B−1 =

{

γµ µ = 0
−γµ µ 6= 0

.

Given γ5 = −iγ0γ1γ2γ3, show that Bγ5∗B−1 = γ5.

Consider a Dirac field ψ which can be written as an integral over plane wave solutions

ψ(x) =
∑

p,s

[

bs(p)us(p)e−ip·x + ds†(p)vs(p)eip·x
]

where
∑

p ≡
∫ d3p

(2π)3(2p0)
. Show that the time-reversal transformation maps ψ and ψ̄ as

follows:

T̂ψ(x)T̂−1 = Bψ(xT )

T̂ ψ̄(x)T̂−1 = ψ̄(xT )B
−1

where pT = (p0,−~p) and xT = (−x0, ~x). (For simplicity let us assume intrinsic phases
ηT = 1 throughout this problem.) You may use without proof

(−1)
1

2
−su−s∗(pT ) = −γ5Cus(p)

(−1)
1

2
−sv−s∗(pT ) = −γ5Cvs(p) .

You should have obtained a relation between B and C. Use this and the defining
property of B stated at the start of this problem to show that

CγµTC−1 = −γµ

where γµT is the transpose of γµ.

Consider the decay of a neutron n to a proton p: n → pe−ν̄e, treating the neutron
and proton (as well as the electron and anti-neutrino) as Dirac fields. Given that the
effective interaction mediating this decay is

LI = −GF√
2
J†
lept,µJ

µ
pn + h.c.,

with Jµ
lept = ν̄eγ

µ(1− γ5)e and Jµ
pn = p̄γµ(gV + gAγ

5)n, derive a condition which gA/gV
must satisfy if this interaction is to be invariant under time-reversal.
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The electroweak theory of the Standard Model consists of an SU(2)L×U(1)Y gauge
theory which undergoes spontaneous symmetry breaking via the Higgs mechanism. Let
W a

µ (a = 1, 2, 3) be the SU(2)L gauge bosons with coupling g and Bµ be the U(1)Y gauge
boson with coupling g′. The scalar field φ transforms as a doublet under SU(2)L, has
hypercharge 1

2 , and has a Lagrangian of the form

Lφ = (Dµφ)
†(Dµφ)− µ2|φ|2 − λ|φ|4 (λ > 0) .

Explicitly write down the terms arising from covariant differentiation of φ, i.e. from Dµφ.

Show that mass terms for 3 out of 4 gauge bosons are generated if the scalar field
acquires a nonzero vacuum expectation value. Be clear about the relation between the
original fields (W a

µ , Bµ) and the ones after symmetry breaking, (W±
µ , Z

0
µ, Aµ).

Show how the electroweak theory includes the electron e and electron neutrino
νe. In particular, write down gauge-invariant terms in the electroweak Lagrangian which
contain the coupling of these fermions to the gauge bosons and others which contain the
fermion-scalar interactions. How does the latter lead to a nonzero electron mass?
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Consider the weak semileptonic decay

K̄0 → π+e−ν̄e

where K̄0 and π+ are pseudoscalar mesons. Assume this decay proceeds due to the
interaction

Leff
W = −GF√

2
J†
lept,µJ

µ
had + h.c.

with Jµ
lept = ν̄eγ

µ(1− γ5)e and Jµ
had = Vusūγ

µ(1− γ5)s . [Ignore K0 − K̄0 mixing.]

Explain why the following 2 equalities hold

〈π+(k)|ūγµ(1− γ5)s|K̄0(p)〉 = 〈π+(k)|ūγµs|K̄0(p)〉
= (p+ k)µf+(q

2) + (p− k)µf−(q
2)

where q ≡ p− k and f+(q
2) and f−(q

2) are scalar (dimensionless) functions of q2.

Treating the electron and anti-neutrino as massless, derive the invariant scattering
amplitude M. In preparation to calculate the decay rate Γ(K̄0 → π+e−ν̄e), find and
justify an expression for M which is proportional to f+(q

2) (i.e. has no f−(q
2) term).

Show that the decay rate Γ(K̄0 → π+e−ν̄e) for this process can be written as an
integral over pion momentum

A

∫

d3k

k0
[

(p · q)2 − q2m2
K

]

|f+(q2)|2

where A is a dimensionful constant which you should determine.

By working in the K̄0 rest frame, or otherwise, show that the decay rate can be
expressed as

Γ = B

∫ b

a
dq2λ3/2|f+(q2)|2

where the kinematic variable λ is defined as

λ = (q2)2 +m4
K +m2

π − 2q2m2
K − 2q2m2

π − 2m2
Km

2
π .

You should determine the dimensionful constant B and the limits of integration a and b.

[You may use without proof the following:

Γ =
1

2mK

∫

d3k

(2π)32k0
d3q1

(2π)32q01

d3q2
(2π)32q02

(2π)4δ(4)(p− k − q1 − q2)
∑

spins

|M|2

Tr γαγβγτγδ = 4(gαβgτδ − gατgβδ + gαδgβτ )

Tr γαγβγτγδγ5 = 4iǫαβτδ

∫

d3q1
|~q1|

d3q2
|~q2|

δ(4)(Q− q1 − q2) q1µq2ν =
π

3
QµQν +

π

6
gµνQ

2

∫

d3q1
|~q1|

d3q2
|~q2|

δ(4)(Q− q1 − q2) = 2π ]
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Renormalized coupling constants gi(µ) (i = 1, 2, 3) generally depend on a renormal-
ization scale µ. For small values of the couplings, the scale dependence can be written to
one-loop order as

µ
d

dµ
gi(µ) = big

3
i +O(g5i ) .

What are the consequences of bi being positive vs. negative?

For αi = g2i /4π, derive an expression relating αi(mZ) to αi(µ). (mZ is the mass of
the Z boson.)

Let α1, α2, and α3 be the coupling constants of the respective Standard Model
gauge groups U(1)Y , SU(2)L, and SU(3)c. Suppose there exists a scale MGUT > mZ at
which the following holds:

5

3
α1(MGUT ) = α2(MGUT ) = α3(MGUT ) .

Show that this implies

α−1
3 (mZ) = α−1

2 (mZ) +
b3 − b2
3
5b1 − b2

[

3

5
α−1
1 (mZ) − α−1

2 (mZ)

]

.

Now let us work to another order, considering a single coupling α. Define a = α/4π.
Given

µ
d

dµ
a = −β0a2 − β1a

3 ,

show that

a−1(µ) = β0 log
µ

Λ
+

β1
β0

log log
µ

Λ
+ O

(

1/ log
µ

Λ

)

for a suitable choice of Λ.
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