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1

Give an account of the Landau–Ginsburg (LG) theory of phase transitions which
should include a discussion of the following points:

(i) The idea of an order parameter;

(ii) The distinction between first-order and continuous phase transitions and how their
occurrence is predicted in LG theory;

(iii) the reason why a line of first-order phase transitions must terminate in a critical
point associated with a continuous phase transition;

(iv) The idea of critical exponents and how they may be derived;

(v) The features of a tricritical point, how it occurs in LG theory and an explanation
of the features of the 3D phase diagram containing a tricritical point.

State what is meant by the scaling hypothesis. For a system described by a single
scalar field, show that LG theory predicts that in the neighbourhood of an ordinary
continuous phase transition the equilibrium free energy, A, can be written as

A = a|t|2f≶

(

b
h

|t|3/2

)

, (∗)

where a and b are real positive constants, t is the reduced temperature and h is the
magnetic field, i.e. the external field conjugate to the order parameter. Explain the
meaning of the subscript ≶ on f≶.

Use the expression (∗) to compute two critical exponents of your choice.

How should (∗) be modified to accommodate anomalous scaling behaviour? In this
case show that the scaling hypothesis predicts that the scaling relations

α+ 2β + γ = 2 , βδ = β + γ ,

hold where the critical exponents α, β, γ, δ should be defined.

Part III, Paper 42



3

2

A statistical field theory in D dimensions is defined on a cubic lattice of spacing a
with N sites and with field variable σn, which may be continuous, on the n-th site. The
Hamiltonian density is defined in terms of a set of operators Oi({σ}) by

H(u, σ) =
∑

i

uiOi({σ}) ,

where the ui are coupling constants with u = (u1, u2, . . .). In particular, H contains the
term −h

∑

n
σn where h is the magnetic field. The partition function is given by

Z(u, C,N) =
∑

σ

exp(−βH(u, σ)− βNC) .

Define the two-point correlation function G(r) for the theory and state how the
correlation length ξ parametrizes its behaviour as |r| → ∞. State how the susceptibility
χ can be expressed in terms of G(r).

Explain how the renormalization group (RG) transformation may be defined in
terms of a blocking kernel which, after p iterations, yields a blocked partition function
Z(up, Cp, Np) which predicts the same large-scale properties for the system as does
Z(u, C,N). State how a and N rescale in terms of the RG scale factor b.

Derive the RG equation for the free energy F (up, Cp), and explain how it may be
expressed in terms of a singular part, f(u), which obeys the RG equation

f(u0) = b−pDf(up) +

p−1
∑

j=0

b−jD g(uj) , p > 0 .

What is the origin of the function g(u) which determines the inhomogeneous part of the
transformation?

In the context of the RG equations, explain the ideas of a fixed point, relevant and
irrelevant operators, a critical surface and a repulsive trajectory. Sketch some typical RG
flows near to a critical surface.

Show how the critical exponents characterizing a continuous phase transition may
be derived. In the case where there are two relevant couplings t = (T − TC)/TC and h,
derive the scaling hypothesis for the singular part, Fs, of the free energy:

Fs = |t|D/λtf±

(

h

|t|λh/λt

)

,

where the meanings of λt, λh should be explained.

The following critical exponents ν, γ, α are defined for h = 0:

ξ ∼ |t|−ν , χ ∼ |t|−γ , CV ∼ |t|−α,

where χ is the susceptibility and CV is the specific heat at constant volume. Establish the
scaling relation α = 2−Dν.
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According to the scaling hypothesis the correlation function for |r| ≪ ξ takes the
form

G(|r|) =
1

|r|D−2+η
fG(|r|/ξ).

What form is G(|r|) expected to take when |r| ≫ ξ? From this parametrization obtain an
expression for the susceptibility and derive the scaling relation γ = (2− η)ν.

In the case that σn is a continuous field variable explain briefly how the exponent
η is related to the scaling renormalization of the field.
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A statistical system in D dimensions and at temperature T , is described by a scalar
field theory whose effective Hamiltonian is defined by

H(φ) =

∫

Λ−1

dDxH(Λ, φ(x)) ,

H(Λ, φ(x)) =
1

2
α−1(Λ, T )(∇φ(x))2 +

1

2
m2(Λ, T )φ2(x) +

1

4!
g(Λ, T )φ4(x) + . . . ,

where Λ is the ultra-violet cut-off andH is the Hamiltonian density. The partition function
is

Z =

∫

{dφ}e−H(φ) .

Why do the coupling constants depend on Λ?

By giving an example of a blocking transformation explain how a Renormalization
Group (RG) strategy for successively integrating out high-momentum modes may be
applied to this model.

By making suitable assumptions show how the Landau-Ginsburg theory of phase
transitions may be derived using the RG in the context of this model.

In the case of a φ4 scalar field theory, the two-point function G(x) and its Fourier
transform G̃(p) are defined by

G(x) = 〈φ(0)φ(x)〉c , G̃(p) =

∫

dDx e−ip · xG(x) .

State what is meant by the truncated two-point function Γ̃(p).

Using perturbation theory explain how Γ̃(p) may be written as

Γ̃(p) = G̃−1
0 (p) + δm2 +Σ(p) ,

where the meaning of each of the terms in this expression should be clearly given. You
may quote the rules of perturbation theory without derivation.

Hence show to one-loop order that

m2(0, T ) = m2(Λ, T ) +
g

2

∫ Λ dDp

(2π)D
1

p2 +m2(0, T )
.

Show that this result is consistent with the Landau-Ginsburg assumption that m2(0, T ) ∼
(T −TC) only for D > DC , where the value of DC for an ordinary critical point should be
calculated.

Describe briefly how the value of DC for a tricritical point is calculated and
determine its value.
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