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1 Time Series
Series 1 and 2 are realisations of two time series models, each containing 1000

observations. The first 100 observations and the autocorrelation functions (ACF) based
on all observations are shown in Figure 1.
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Figure 1: Time series and the ACFs

(a) Discuss the non-stationarity of these two time series and the zeros of the autore-
gressive polynomials.

(b) Suitable differencing is applied to Series 1 and let the resulting differenced series be
denoted {Xt}. Three ARMA(p, q) models were fitted to {Xt} and the fitted results
are given below. (Estimators and standard errors of the coefficients are rounded to
two decimal places; sigma squared estimators are rounded to 1 significant figure.)
Which is your preferred model of {Xt}? Give your reasons, and write down the
corresponding model for {Xt} and spectral density thereof.

ARMA(2,2)

Call:
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arima(x = series.1.diff, order = c(2, 0, 2), include.mean = F)

Coefficients:

ar1 ar2 ma1 ma2

−0.20 0.31 0.38 −0.06
s.e. 0.14 0.12 0.14 0.12

sigma squared estimated as 4: log likelihood= -2142.99, aic = 4295.97

ARMA(2,1)

Call:

arima(x = series.1.diff, order = c(2, 0, 1), include.mean = F)

Coefficients:

ar1 ar2 ma1

−0.30 0.28 0.50
s.e. 0.16 0.04 0.16

sigma squared estimated as 4: log likelihood= -2143.13, aic = 4294.26

ARMA(1,1)

Call:

arima(x = series.1.diff, order = c(1, 0, 1), include.mean = F)

Coefficients:

ar1 ma1

0.62 −0.42
s.e. 0.07 0.08

sigma squared estimated as 4: log likelihood= -2152.9, aic = 4311.81

(c) Adopting the model chosen in your answer to part (b) above, discuss the causality and
invertibility of {Xt}. Find polynomials φ̃(z) and θ̃(z) such that

φ̃(B)Xt = θ̃(B)Wt,

where {Wt} ∼ WN(0, 1) and B is the backward shift operator.

(d) Derive the linear process representation (MA(∞)) of the {Xt} (calculate the first 5
coefficients and give the formula for the remaining coefficients) with the parameters given
in (b). Derive the autocovariance function (ACVF) and ACF of this linear process
representation in terms of the MA(∞) coefficients.
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2 Time Series

(a) Point out the mistake in the following statement, write down the missing condition
and explain why the statement is wrong without that condition.

{Xt} is the stationary solution of

Xt = φXt−1 + Zt, t = 0,±1, . . . , {Zt} ∼ WN(0, σ2
z ).

(b) Write down the proper condition such that {Xt} is a causal function of {Zt}. Let
{Yt} be the AR(1) plus noise series defined by

Yt = Xt +Wt, {Wt} ∼ WN(0, σ2
w),

and E(WsZt) = 0 for all s and t. Show that {Yt} is stationary and find its
autocovariance function (ACVF).

(c) Under the conditions in (b), show that {Yt} is an ARMA(1,1) process and express
the three parameters of this model in terms of φ, σ2

w and σ2
z .

(d) Write down one complete state-space representation of {Yt} and specify the
observation and state equations.
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3 Monte Carlo Inference
Let X0 = X1 = 0. We consider the following AR(2) model defined recursively for

any t ∈ N:
Xt+2 = aXt+1 + bXt + ǫt,

where the ǫt are i.i.d. Gaussian of mean 0 and variance 1 (we write N (0, 1) for this
distribution). We observe the chain X1, . . . ,Xn until some time n > 2. We would like to
estimate the parameters (a, b) using Bayesian inference.

(a) Explain how to generate observations from a Gaussian distribution N (0, 1) of mean 0
and variance 1. Prove this method works.

(b) Write the density of X2|X1 (i.e. the density of X2 knowing X1), the density of
X3|(X2,X1), and the density of X4|(X3,X2,X1). Deduce in a similar way the
distribution of Xt+2|(Xt+1,Xt, . . . ,X1) for t > 2.

(c) Deduce from your answer to the last question the likelihood of the samples X1, . . . ,Xn.

(d) In order to apply Bayesian inference to this chain, we set priors for (a, b). We choose
a ∼ N (0, 1) and b ∼ N (0, 1), with a, b independent of each other. What is the
posterior density π(a, b) of (a, b) knowing X1, . . . ,Xn, that is to say the density of

(a, b)|X1, . . . ,Xn?

What are the conditional distributions, of

b|a,X1, . . . ,Xn, and a|b,X1, . . . ,Xn?

[Hint: Consider a bivariate normal distribution N (µ,Σ) where µ = (µi)i∈{1,2} and
Σ = (Σi,j)(i,j)∈{1,2}2 . Consider Y = (Y1, Y2) ∼ N (µ,Σ). Then the conditional

distribution of Y1 knowing Y2 = y2 is N
(

µ1 +
Σ1,2

Σ2,2
(y2 − µ2),Σ1,1 − Σ1,2

Σ2,2
Σ2,1

)

(and

the same goes for the conditional distribution of Y2 knowing Y1 changing the index
accordingly).]

(e) Explain how you can implement the Gibbs sampler using these posterior conditional
distributions. You are given a function φ : R2 → R. How would you estimate φ(a, b)
using the output of the Gibbs sampler?
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4 Monte Carlo Inference
Consider two densities f and g defined on R, with associated measures fdx and

gdx, for which there exists a constant M > 0 such that ∀x ∈ R, we have f(x) 6 Mg(x).
Assume that you can generate random variables distributed according to gdx with your
computer. Let φ be a function such that

∫

R
φ(x)2f(x)dx < ∞.

(a) Explain how you can make an estimate, θ̂1, for the quantity θ =
∫

R
φ(x)f(x)dx by

using importance sampling. Compute the mean and variance of θ̂1, proving that they
are both finite. What is the limiting distribution of

√
n(θ̂1 − θ)? Justify your answer.

(b) Explain how you can generate a random variable with density f using observations
generated according to g. Prove why your method works.

(c) Assume that you have a dataset of n observations X1, . . . ,Xn distributed according
to g. You use the technique of the previous question in order to transform this sample
set of i.i.d. random variables X1, . . . ,Xn distributed according to gdx into a sample
set of i.i.d. random variables Y1, . . . , YN distributed according to fdx, where N is a
random variable. What is its distribution? What are the expectation and the variance
of N? Justify your answers.

(d) What is the limiting distribution of N−EN√
n

? What do you think is the limiting

distribution of
√
N
(

1
N

∑N
n=1 φ(Yi)− θ

)

? [You need not prove your assertions.]

(e) Which estimate of θ should be preferred, the importance sampling estimate θ̂1 or the
estimate θ̂2 =

1
N

∑N
n=1 φ(Yi)? [You need not prove your assertions.]

END OF PAPER
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