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1

Starting at time t = 0, a machine produces widgets as a Poisson process with a
rate λ widgets per hour, so that the number of widgets in time (0, t) hours has a Poisson
distribution with mean λt. It is observed until T hours have elapsed, and in that time it
produces a total of n widgets at t1, t2, ..., tn hours.

(a) What is the likelihood for λ provided by the data?

(b) What does it mean to say that a Gamma (a, b) distribution for λ is conjugate for this
likelihood?

(c) If you assume a Gamma(a, b) prior for λ, what is the posterior distribution?

(d) Let M be the number of widgets that will be produced in the next hour. Conditional
on λ, what is the probability p(M = 0|λ) of no widgets in the next hour?

(e) Show that p0 = p(M = 0|a, b, n), the current predictive probability of no widgets

in the next hour, can be written
(

1− 1
b+T+1

)n+a
. Show that, as T, n → ∞ and

n/T → λ̂, p0 tends to e−n/T . Suggest why this is reasonable.

(f) Suppose you are given values for a, b, n. Describe, using rough BUGS code (exact
syntax is not necessary), how you would estimate the posterior probability that
p0 < 0.5.

(g) Suppose you set λ = 1 and set the machine going at time 0. You now find that at
time T the machine is in fact operating at a rate of 2 widgets per hour, since at
some point θ in the interval (0, T ) the hourly rate suddenly changed from 1 to 2. If
j(θ) is such that tj < θ < tj+1, what is the likelihood for θ?

(h) Describe, using rough BUGS code, how you might make an inference on θ, by using
the ’zeros’ trick or otherwise. You can assume a uniform prior for θ.

[A Poisson(µ) distribution has density p(y|µ) = µy

y! e
−µ; y = 0, 1, ..... A Gamma(a, b)

distribution has density p(λ|a, b) = ba

Γ(a) λ
a−1 e−λb; λ ∈ (0,∞), with mean a/b and

variance a/b2.]
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Assume a lady is given 8 cups of tea, 4 of which have had the tea put in first, and
for 4 the milk has been put in first. She does not know there are 4 of each, and is just
asked to say whether the tea or milk were first, with the following results.

Says ’Milk first’ Says ’Tea first’

Truly Milk first 3 1 4
Truly Tea first 1 3 4

Assume that, when the Milk truly has been put in first, the number of times she says
’Milk first’ is Binomial(4, pM ), and if the Tea truly has been put in first, the number of
times she says ’Milk first’ is Binomial(4, pT ).

(a) Define the Jeffreys prior pJ(θ) for a general one-parameter sampling distribution
pY (y|θ).

(b) Derive the Jeffreys prior for a Binomial(n, θ) distribution.

(c) Assuming independent Jeffreys priors for both pM and pT , what are the posterior
distributions for pM and pT , and their posterior means?

(d) How would you make an inference on pM − pT using MCMC methods?

(e) Someone says that pM and pT should be correlated, to reflect that an individual is
generally more or less likely to say that the milk went in first, whatever the truth.
They suggest the following method of producing a correlated distribution for pM
and pT .

1. Generate pM from a Beta(α, β) prior distribution

2. Generate a random variable X = x from a Binomial(n, pM ) distribution,
where n is fixed by the investigator

3. Compute the posterior distribution Beta(α + x, β + n− x)

4. Generate pT from this Beta(α + x, β + n− x) prior distribution

Explain briefly why large n will induce a large correlation between pM and pT .

(f) Using the law of the iterated expectation (see below), show that E[X] = nα
α+β .

(g) Using the law of the iterated expectation, show that E[pT ] =
α

α+β .

(h) Show that the joint density p(pT ,X, pM ) ∝
(

n
x

)

(pT pM )x+α−1[(1 − pT )(1 −

pM )]n−x+β−1

(i) What does it mean to say 2 random variables X and Y are exchangeable? If X and
Y are exchangeable, show they have the same marginal distribution.

(j) Explain why pM and pT are exchangeable. Hence argue that pT has a Beta(α, β) prior
distribution, the same as pM .
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[NB A Beta(a, b) distribution has density p(θ|a, b) = Γ(a+b)
Γ(a)Γ(b) θ

a−1 (1 − θ)b−1; θ ∈ (0, 1).

Its mean is a/(a+ b). The law of the iterated expectation states that for random variables
(X,Y ), E[E[X|Y ]] = E[X].

3

Assume Y1, .., Yn are observations from a Normal(β, 1) distribution so that Y ∼
Normal(β, 1n). Two competing hypotheses are being considered: H0 says that β is
negligibly small, and H1 that β may be any size. These hypotheses are represented
by alternative prior distributions p0(β) = Normal(0, 1

n0
), where n0 is large, and p1(β)

= Normal(0, c
2

n0
), where c is large.

(a) Show that c is the ratio of the two prior densities at β = 0.

(b) For i = 0, 1, what are the posterior distributions pi(β|y)? [NB You can just state
these].

(c) For i = 0, 1, what are the predictive distributions pi(y) =
∫

p(y|β)pi(β)dβ? [NB You
do not need to actually do the integrals].

(d) For an observed y, what is the Bayes factor B01 between hypotheses H0 and H1? If
y = 0, show that B01 =

√

(n0

n + c2)/(n0

n + 1).

(e) Suppose we observe y = 3/
√
n. Why would we consider this ’statistically significant’

evidence that β 6= 0? It has been suggested that a reasonable assumption might
be n0/n = 100, and c = 100. What would be the behaviour of the posterior
distributions pi(β|y) for y = 3/

√
n?

(f) If we observe y = 3/
√
n, show that the Bayes factor will favour H0.

(g) Suppose we assign prior probabilities p(H0) = p(H1) = 0.5. In terms of the posterior
distributions pi(β|y) and B01, what is the overall posterior distribution for β?

(h) Explain why this posterior distribution will be pulled towards 0 for ’small’ y of O( 1
√

n
),

but for large y will centre on y.

(i) Explain how you might extend this idea to a multiple regression context in which you
wanted to select variables only if they had a substantial effect, and otherwise reduce
their coefficients to near 0.
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A clinical trial randomises nT patients to a new drug and nC to a control treatment,
and observes rT successful responses in the treated group and rC in the control: these are
assumed to be observations from Binomial distributions with underlying chance θT , θC
of success in the treated and control groups respectively. Suppose we assume model
logit θC = log θC

1−θC
= α− β/2, logit θT = α+ β/2.

(a) Show that β is the log-odds-ratio associated with the treatment.

(b) How, roughly, might you interpret α?

(c) Suppose we thought an odds-ratio outside the range (1/8,8) was rather implausible.
What prior on β might be appropriate? [NB. e2 = 7.4]

(d) Consider the following data from 6 (real) randomised trials on beta-blocker drugs.

Study Mortality: deaths/total
Treated Control

1 3/38 3/39
2 7/114 14/116
3 5/69 11/93
4 102/1533 127/1520
5 32/209 40/218
6 22/680 39/674

We now want to put together this series of J = 6 studies on the same drug, where
the jth study has rTj/nTj successful responses in the treated group and rCj/nCj in
the control group. We assume logit θCj == αj − βj/2, logit θTj = αj + βj/2. What
does it mean to say that we assume the βjs are exchangeable, and when might this
be a reasonable assumption?

(e) Suppose we assume βj ∼ Normal(µ, τ2). You consider it very unlikely that the true
odds-ratios eβj would vary from trial by more than a factor of 50. What might be
reasonable priors for µ and τ , if you have this weak prior information? Why would
it be inappropriate to assume a Jeffreys prior p(τ) ∝ 1/τ?

(f) We now assume the αi’s have independent locally uniform priors. Write rough BUGS
code for this analysis

(g) We then fit two additional models: a ’Common’ model in which it is assumed that
all the βj ’s are identical, and an ’Independent’ model in which each βj is given
an independent locally uniform prior. The following output from WinBUGS is
obtained.

Dbar = post.mean of -2logL;

Dhat = -2LogL at post.mean of stochastic nodes

Model Dbar Dhat pD DIC

---------------------------------------------------------------------
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Common 64.8 57.8 7.0 71.8

Exchangeable 61.9 53.2 8.7 70.5

Independent 64.9 53.1 11.9 76.8

How would you interpret the Dhat, pD and the DIC values for these three models?

(h) The assumption that the β’s are normally distributed is questionable, and the
following modification to the prior distribution has been suggested:

beta[j] ~ dnorm(mu , invtau2[j])

invtau2[j] <- lambda[j]/(4*psi*psi)

lambda[j] ~ dchisqr(4)

By considering the distribution of
(βj−µ)
ψ or otherwise, prove that this specification

will induce, conditional on µ and ψ, a t4 distribution for the β’s.

(i) When might this be an appropriate model?

(j) How might you assess if it were a more appropriate model for the data?

END OF PAPER
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