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1 Statistics in Medical Practice
Consider a trial in which a new treatment is to be tested. When the new treatment

is given to a patient, a normally distributed outcome is observed. Outcomes for patients
1, 2, . . . are i.i.d random variables Y1, Y2, . . ., where Yi ∼ N(δ, σ2). The true value of σ2 is
known.

The null hypothesis H0 : δ = 0 is to be tested.

(a) From patients 1, . . . , n, formulate the Wald test statistic, and derive its distribution
i) under H0 and ii) when δ = δ∗, where δ∗ > 0.

(b) In terms of the standard normal cumulative density function, Φ(x), derive the formula
for the value of n required for a one-sided level-α test with power 1− β when δ = δ∗.

(c) Now consider a two-stage trial with n patients recruited in the first stage and a second
set of n patients recruited in the second stage.

Let W1 label the Wald test statistic of H0 for the first stage patients (i = 1, . . . , n),
and W2 the Wald test statistic of H0 for the combined set of first and second stage
patients (i = 1, . . . , 2n).

Derive the exact joint distribution of (W1,W2): i) under H0 and ii) when δ = δ∗.

(d) If W1 is below f ∈ (−∞,∞), a pre-specified finite futility boundary, the trial stops
after the first stage without rejecting H0. If the trial continues to the second stage,
H0 is rejected when W2 > Φ−1(1− α), and is not rejected otherwise.

Show that under this trial design, the total probability of rejecting H0 when δ = 0 is
< α.

(e) If the trial continues to the second stage, then it is of interest to estimate δ. It is

proposed to use the maximum likelihood estimator δ̂ =
∑

2n

i=1
Yi

2n
to estimate δ.

Explain why this estimator is biased (i.e. E(δ̂|stage 2 occurs) 6= δ) and how this bias
will change as δ increases to ∞.

(f) Briefly describe an alternative estimator that uses data from all patients, and is less
biased than δ̂. Note that a full derivation of the estimator is not required.
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2 Statistics in Medical Practice
Myelodysplastic syndrome (MDS) is a disorder of the blood cells which can lead to

leukaemia. It can be classified as mild or severe, and cannot improve over time. MDS can
only be cured with hematopoietic stem cell transplantation, but the current clinical policy
is to delay transplantation until the disease becomes severe.

A cohort of patients with MDS were observed at a series of clinic visits, beginning
at diagnosis and continuing until death. The severity of MDS is recorded at each visit.
The following is a sample of clinic visits or death times from three of these patients. The
time of death is known exactly, but the disease severity is not recorded when a patient
dies.

Patient
number

Months
after
diagnosis

State (1=mild,
2=severe,
3=death)

1 0.0 1
1 8.5 1
2 0.0 1
2 26.3 1
4 0.0 2
4 12.6 2
4 47.2 3

It is proposed to fit a continuous-time Markov multi-state model to the full data to
represent the process of MDS progression along with death from any cause.

(a) Draw a diagram of the states and allowed transitions in the model, including symbols
for the corresponding transition intensities, and write down the transition intensity
matrix (with as few unknown expressions as possible).

(b) Suppose that the researchers

• expect patients in this cohort with mild MDS to spend about 8 years before
progression or death,

• believe progression or death from mild MDS is equally likely, and

• expect patients with severe MDS to survive about 3 years.

Derive the corresponding elements of the (monthly) intensity matrix from (a).

(c) Write down a formula for the contribution of the three patients above to the
likelihood as a function of the transition intensity matrix. Define any terms that
you use and state all assumptions that are being made in this model.

The approximate intensities obtained in (b) were used as initial values in a
numerical algorithm to compute the maximum likelihood estimates under this model.
The maximum likelihood estimates for the monthly transition intensities are as follows,
with the corresponding 95% confidence intervals in brackets.
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Mild – Mild -0.0115 (-0.0130,-0.0102)
Mild – Severe 0.0072 ( 0.0061, 0.0085)
Mild – Death 0.0043 ( 0.0035, 0.0054)
Severe – Severe -0.0318 (-0.0352,-0.0287)
Severe – Death 0.0318 ( 0.0287, 0.0352)

(d) What is the expected time spent before moving to another state, for a person with
mild MDS, and severe MDS, respectively, with 95% confidence intervals? Hence
calculate the expected survival time for a person in mild MDS (no confidence interval
required).

The following table gives the maximum likelihood estimates (with 95% confidence
intervals in brackets) for a further model in which each log transition intensity is a linear
function of two binary covariates: indicators for whether the previous observation was
made in the period from 0–3 months after a hematopoietic stem cell transplant, and >3
months after transplant, respectively.

Transition intensity Hazard ratio after transplant
(before transplant) 0-3 months >3 months

Mild – Mild
-0.0119
(-0.0136,-0.010)

Mild – Severe
0.0103 0.52 0.02
( 0.0087, 0.012) ( 0.11, 2.4) (0.0031,0.15)

Mild – Death
0.0016 43.92 3.54
( 0.00009, 0.003) (21.07,91.5) (1.73,7.25)

Severe – Severe
-0.0380
(-0.044,-0.033)

Severe – Death
0.0380 2.37 0.57
( 0.033, 0.044) ( 1.80, 3.1) (0.46,0.72)

(e) Interpret the reported hazard ratios for the covariate effects. Suggest plausible
explanations why particular ones are greater (or less) than 1, and why some are
bigger than others. How might these results justify the transplantation policy stated
in the introduction to this question?
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3 Statistics in Medical Practice

(a) When analysing a dataset that contains missing values, it is common to assume that
the data are missing at random (MAR). Write down an equation that defines the
missing at random assumption. Briefly define the notation used in your equation.

(b) A sample of 102 individuals newly diagnosed with a particular medical condition are
recruited into a cohort study and followed up over two years. At the end of each of
the two years, the individuals are asked whether they have used a prescription drug in
the past 12 months. Unfortunately, some patients drop out of the cohort study during
the second year, and once a patient has dropped out there is no further opportunity
to question him or her. The following table gives the numbers of patients with each
possible pattern of data (‘–’ denotes that data are missing because the patient has
dropped out).

Pattern of data Number of
Used a Used a individuals

prescription prescription with this
drug in year 1 drug in year 2 pattern

no no 30
no yes 7
yes no 10
yes yes 18
no – 21
yes – 16

(i) You wish you know whether these data can be assumed to be missing at random,
but the doctor managing this cohort study does not know what ‘missing at
random’ means. What would be a sensible way to ask this doctor whether she
thinks the missing at random assumption is reasonable for these data?

(ii) Assume that the data are missing at random and estimate the probability that
a patient uses a prescription drug in year 2.

(iii) Now suppose that you can assume that the data are missing completely at
random. Using this assumption, calculate a more efficient estimate of the
probability that a patient uses a prescription drug in year 2. Give a brief
explanation for why this estimator is more efficient than the one you calculated
in part (b).

(c) Suppose that you have a sample of N individuals and you wish to investigate how
blood pressure depends on age. Let Yi denote the ith individual’s blood pressure and
let Xi denote his or her age. You specify a linear regression model with blood pressure
as the outcome and age as the covariate. Unfortunately, although blood pressure is
observed for all N individuals, age is missing for some of them. Your colleague tells
you that if you assume that these data are missing at random, then the missingness
pattern is ignorable. Explain what this statement means and provide a formal proof
that it is true. [You may assume that the parameters of the model for the data and
the parameters of the model for the missingness pattern given the data are distinct.]
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4 Analysis of Survival Data
What is meant by the intensity of a counting process? Derive the Nelson–Aalen

estimator of the integrated hazard. [You may assume there are no ties in the data.]

A time-to-event dataset is made up of the following observations:

3, 4+, 5+, 6, 9,13

where a ‘+’ indicates a censored observation.

Calculate the Nelson–Aalen estimate of the integrated hazard at each of the
timepoints. Show that the sum of the estimates of the six integrated hazards equals
the number of observed events.

Let there, in general, be n individuals and denote the observation time (event or
censored) of the ith individual be xi. Continuing to assume no ties, prove algebraically
that

∑
n

i=1
Ĥ (xi), where Ĥ (t) is the Nelson–Aalen estimate of the integrated hazard, is

equal to d, the number of observed events.

Suppose now that it is assumed the hazard function is a constant θ. If θ̂ is an
estimate of θ, what now is Ĥ (xi)? Taking

∑
n

i=1
Ĥ (xi) = d to be a desirable general

property of estimators of integrated hazards, derive an estimator for θ and calculate its
value for the time-to-event dataset. Do you think it is a good estimate?

Part III, Paper 32



7

5 Analysis of Survival Data
A continuous time-to-event random variable T has integrated hazard function

H(t). Show that the time-to-event random variable U defined by U = H(T ) has an
exponential(1) distribution whatever the form of H. [You may assume that H has an
inverse.]

A time-to-event dataset is made up of observations (xi, vi), i = 1, . . . , n where if
vi = 0 then xi represents a censored observation and if vi = 1 then xi represents an
observed event. A model has been fitted to the data and the integrated hazard has been
estimated. A new time-to-event dataset (yi, vi) is constructed where yi = Ĥi(xi). Explain
briefly how you can use this new dataset to investigate the adequacy of the model.

If the model is correct, and there are no censored observations, what would you
expect the mean of the yi to be approximately equal to? If there are censored observations,
how would you adjust the yi to give, over all the observations, an approximately known
expected mean? Justify your answer in general terms.

Verify that your proposed adjustment is reasonable in the following special case.
The time-to-event variable U has an exponential(1) distribution. The time-to-censoring
variable C has, independently of U, a probability π of being equal to c and a probability
1 − π of being equal to ∞. Define a new time-to event variable U∗ which equals
U if the event is observed and which equals C + k if the event is censored, that is:
U∗ = min(U,C) + kI [C < U ] where k is a constant and I is the indicator function. Show
that k can be chosen such that EU∗ = 1. Comment on the implications of k’s lack of
dependence on c.
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6 Analysis of Survival Data
Explain what is meant by a Schoenfeld function and by a Schoenfeld residual. How

are the Schoenfeld residuals calculated after a proportional hazards model has been fitted?
Outline briefly how Schoenfeld residuals can be used to detect variation with time of the
dependence of hazard on explanatory variables.

A time-to-event dataset has been generated by a proportional hazards process
such that the hazard for the ith individual (i = 1, . . . , n with n > 3) is given by
hi(t) = exp(β0z

i)h0(t) where β0 is a constant, zi ∈ {0, 1}, and h0(t) is the baseline hazard.
At time t = ξ there are precisely three individuals in the risk set, with distinct observed
event times. For two of those individuals zi = 0 and for the third zi = 1.

(a) Given that there is an event at t = ξ, calculate the probability – conditional on the
history of the time-to-event process up to just before t = ξ – that it is an individual
with zi = 0 who has the event. Write down the correponding Schoenfeld function
calculated at β = β0. Similarly, write down the conditional probability and the
corresponding Schoenfeld function calculated at β0 when the individual with zi = 1
has the event. Show that the conditional expectation of the Schoenfeld function
calculated at β0 is zero.

(b) Suppose that it is in fact the individual with zi = 1 who has an event at t = ξ. Write
down the Schoenfeld function s (β) for variable z at time ξ. Calculate s (−∞), s (0)
and s(∞), interpreting your answers.
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7 Analysis of Survival Data
What, in the context of competing risks, is meant by a cause-specific hazard? What

is meant by a cumulative risk function? Obtain an expression, in terms of the cause-
specific hazards, for the cumulative risk function of a particular event in the presence of
competing events.

(a) Patients with a particular disease undergo surgery at time t = 0. After surgery,
patients are exposed to the risk of death from two sources:

A: due to the surgery – the cause-specific hazard equals θA for t 6 τ and equals
zero for t > τ .

B: due to the disease (despite surgery) – the cause-specific hazard equals θB for all
t.

Obtain the cumulative risk function for death due to the disease, evaluating any
integrals. What is the probability that an individual dies as a consequence of surgery?
Verify that all individuals ultimately die from one cause or another.

(b) Using the following data, calculate a non-parametric estimate of the cumulative risk
function for event B at time t = ak+3 in the presence of a competing event A:

(i) the estimate of the cumulative risk function for event B at t = ak is 0.3;

(ii) the estimate of the survivor function for the composite event ‘A or B’ at t = ak
is 0.4;

(iii) there are ten individuals in the risk set just after t = ak;

(iv) no individuals have events or are censored in the interval ak < t < ak+1;

(v) an individual has event B at t = ak+1;

(vi) no individuals have events or are censored in the interval ak+1 < t < ak+2;

(vii) an individual has event A at t = ak+2;

(viii) no individuals have events or are censored in the interval ak+2 < t < ak+3;

(ix) an individual has event B at t = ak+3, and another individual is censored at that
time.

END OF PAPER
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