MATHEMATICAL TRIPOS Part III

Friday, 6 June, 2014 1:30 pm to 4:30 pm

PAPER 3

REPRESENTATION THEORY AND QUIVERS

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

Throughout, let k be an algebraically closed field.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Define a quiver Q. What is a representation X of Q? Define a morphism $\theta : X \to Y$ between two representations X and Y of Q. Define the path algebra, A := kQ of Q.

Denote by $\operatorname{Rep}(Q)$ the category of representations of Q. Show that $\operatorname{Rep}(Q)$ is equivalent to the module category Mod A. State a necessary and sufficient condition on Q for A to be finite-dimensional over k.

Construct (up to isomorphism) all the indecomposable representations of the quiver A_3 consisting of three vertices and two arrows between them. You may choose between either of the two possible orientations:

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \quad \text{or} \quad \bullet \longrightarrow \bullet \longleftarrow \bullet$

You should justify your answer. [Do not attempt the classification of indecomposables of both quivers and do not appeal to Gabriel's theorem.]

$\mathbf{2}$

Let Q be a quiver having no oriented cycle. Given $i \in Q_0$ define the simple module S(i) with dimension vector ε_i (the *i*th basis vector of \mathbb{Z}^{Q_0}). Show that every simple representation of Q is isomorphic to S(i) for a unique $i \in Q_0$. Show also that any finite-dimensional semisimple representation is uniquely determined by its dimension vector, up to isomorphism.

Now let Q be arbitrary. Decompose $1 = \sum_{i \in Q_0} e_i$ into orthogonal idempotents, and in the corresponding decomposition of kQ let $P(i) = P(e_i) = kQe_i$ be the *i*th summand. Characterise both P(i) and its endomorphism algebra $\operatorname{End}_Q(P(i))$ in terms of spans of certain paths. If *i* is any vertex and $X \in \operatorname{Rep}(Q)$, show that $\operatorname{Hom}_Q(P(i), X) \cong X_i$. Deduce that P(i) is indecomposable.

Consider the representation $X: k \xrightarrow{1} k \leftarrow 0$ of the quiver A_3 . Show that X is projective.

UNIVERSITY OF

3

Let V, W be representations of the quiver Q. Define $\operatorname{Ext}^1_Q(V, W)$. With the usual notation, consider the map

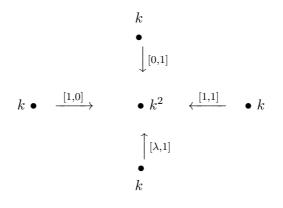
$$\begin{split} \gamma_{V,W} &: \bigoplus_{i \in Q_0} \operatorname{Hom}(V_i, W_i) \longrightarrow \bigoplus_{\rho \in Q_1} \operatorname{Hom}(V_{s(\rho)}, W_{t(\rho)}) \\ & (u_i)_{i \in Q_0} \longmapsto \left(u_{t(\rho)} f_{\rho} - g_{\rho} u_{s(\rho)} \right)_{\rho \in Q_1}. \end{split}$$

Identify (without justification) the kernel and cokernel of $\gamma_{V,W}$. Assuming V, W are finitedimensional, define the Ringel form on \mathbb{R}^{Q_0} for V, W. Explain why your definition depends only on the dimension vectors of V, W.

Compute dim $\operatorname{Ext}^1_Q(V, V)$ in each of the following situations.

(a) $Q = L = \overset{\bullet}{\bigcirc}$, the loop, and V = k with transformation given by the matrix $[\lambda]$ (for $\lambda \in k$).

(b) $Q = S_4$, the four-subspace quiver, and, for $\lambda \in k, V$ is as follows:



UNIVERSITY OF

 $\mathbf{4}$

What does it mean to say that an affine algebraic group is unipotent?

Let $x = (x_{\rho})_{\rho:i \to j} \in \operatorname{Rep}_Q(\underline{n})$ correspond to the finite-dimensional representation $X = X_x$ of the quiver Q. Explain briefly why the linear algebraic group $\operatorname{Aut}_Q(X)$ is open in $\operatorname{End}_Q(X)$. Prove that $\operatorname{Aut}_Q(X)$ decomposes as a semi-direct product of a closed, normal, unipotent subgroup and a product of general linear groups. Deduce a criterion for the indecomposability of a representation in terms of its automorphism group.

Now recall the existence of a 4-term exact sequence of k-spaces

$$0 \to \operatorname{End}_Q(X) \to \bigoplus \operatorname{End}_k(X_i) \xrightarrow{\xi_x} \operatorname{Rep}_Q(\underline{n}) \to \operatorname{Ext}_Q^1(X, X).$$

You are not being asked to prove existence but you should state explicitly a formula for ξ_x .

Find the differential at the identity of the orbit map associated to X. By identifying $\operatorname{Rep}_Q(\underline{n})$ with its own tangent space, show that the image of ξ_x is the Zariski tangent space $T_x(\mathcal{O}_X)$ (standard dimension formulae can be quoted without proof).

Deduce that \mathcal{O}_X is open in $\operatorname{Rep}_Q(\underline{n})$ if and only if $\operatorname{Ext}_Q^1(X, X) = 0$, in which case it is the unique dense orbit of dimension vector \underline{n} (standard facts about dimensions of normal spaces may be assumed).

CAMBRIDGE

 $\mathbf{5}$

Let A be a finitely-generated algebra. Define $\operatorname{Rep}_A(\underline{n})$ for $\underline{n} \in \mathbb{N}^m$. Explain how $\operatorname{GL}(\underline{n})$ acts on this affine variety. Let \mathcal{O}_X be the orbit in $\operatorname{Rep}_A(\underline{n})$ of points x with $X_x \cong X$. Prove that

$$\dim \operatorname{GL}(\underline{n}) - \dim \mathcal{O}_X = \dim \operatorname{Stab}(x) = \dim \operatorname{Aut}(X) = \dim \operatorname{End}(X).$$

What does it mean to say that X degenerates to Y? For the special case of $\operatorname{Rep}_A(r)$ for $r \in \mathbb{N}$, show directly that if

$$0 \to X' \to X \to X'' \to 0$$

is an exact sequence of finite-dimensional representations then X degenerates to $X' \oplus X''$. [*Hint:* An element $x \in \operatorname{Rep}_Q(r)$ is defined by matrices $x_g \in M_r(k)$ where g runs through a set of generators of A.]

Assuming the above result about degeneration holds for $\operatorname{Rep}_A(\underline{n})$, where A = kQ, the path algebra of a quiver, deduce that the finite-dimensional representation X of Q degenerates to the associated graded representation $\operatorname{gr}(X)$ defined by a composition series of X.

(i) Determine $\operatorname{Rep}_Q(\underline{n})$ when Q is the quiver

$$\bullet {\stackrel{\rho}{\longrightarrow}} \bullet$$

Determine the orbits in $\operatorname{Rep}_Q(\underline{n})$.

(ii) Let Q be the quiver

$\bullet \longrightarrow \bullet \longrightarrow \bullet$

Let $\underline{n} = (2, 2, 2)$ and $X = k^2 \xrightarrow{\text{id}} k^2 \xrightarrow{\text{id}} k^2$. Find \mathcal{O}_X and show that it is open in $\operatorname{Rep}_Q(\underline{n})$ (hence $\overline{\mathcal{O}_X} = \operatorname{Rep}_Q(\underline{n})$). Determine the orbits on the boundary. [Recall that the boundary of a space T is the set of points in \overline{T} not belonging to the interior of T.]

CAMBRIDGE

6

What does it mean to say that a (finite-dimensional) representation X of the quiver Q is a brick? Give an example of an indecomposable module for a quiver which is not a brick (only brief justification is required).

Which of the following are bricks (justifying briefly your answer)?

(i) An arbitrary indecomposable module for the quiver $\bullet \longrightarrow \bullet$.

(ii) The Kronecker quiver K_2 and the representation X is $k^2 \stackrel{\rho_1}{\underset{\rho_2}{\Rightarrow}} k^2$ where $\rho_1 = \mathrm{id}$

and $\rho_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$

Show that if X is indecomposable and not a brick, then X contains a brick Y such that $\operatorname{Ext}^1(Y,Y) \neq 0$.

Now let q be the Tits form and suppose it is positive definite. Show that every indecomposable X is a brick with no self-extensions. Show also that if $\underline{n} = \underline{\dim}X$, then $q(\underline{n}) = 1$.

END OF PAPER