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What is meant by a compact H-hull?

What does it mean to say that a random family of compact H-hulls (Kt)t>0 is a
Schramm–Loewner evolution?

Show that, if (Kt)t>0 is a Schramm–Loewner evolution, then (Kt)t>0 is scale-
invariant and has the domain Markov property. If you rely on any statements identifying
Loewner transforms, these should be justified.

Show that, moreover, these properties characterize Schramm–Loewner evolutions,
in a sense which you should make precise.

2

Let α ∈ (0, 2π] and introduce the open cone Wα := {reiθ, r > 0, θ ∈ (−α/2, α/2)}.
Let B be a complex Brownian motion started at 1. For r > 1, denote by T (r) the first
exit time of the ball of radius r centered at 0 i.e. T (r) := inf{t > 0, |Bt| = r}. We would
like to compute the probability that the complex Brownian motion exits the disk before
leaving the cone i.e. P1(B[0, T (r)] ⊆ Wα)

a) Show that we can reduce the problem to the case α = π thanks to the map z 7→ zπ/α.

We fix now α = π. Denote by S := inf{t > 0, Re(Bt) = 0} the first hitting time of the
imaginary axis by the Brownian motion.

b) Using a reflection on the imaginary axis, prove that

P1(T (r) < S) = P1(Re(B(T (r))) > 0)− P1(Re(B(T (r))) < 0).

c) With a proper scaling and Möbius transformation, deduce that

P1(T (r) < S) =
2

π
Arctan

(

2r

r2 − 1

)

[You can use the formula:

∫ π/2

−π/2

r2 − 1

1 + r2 − 2r cos(θ)
dθ = π + 2Arctan

(

2r

r2 − 1

)

]

d) Write down the equivalent formula for an arbitrary α.

Part III, Paper 29



3

3

a) Let K be a compact H-hull. What is the definition of the mapping-out function?
Show briefly that it is indeed uniquely defined (you can use the results of the lectures
about conformal automorphism without proof).

We now denote by gK the mapping-out function of K.

b) Write down the definition of the half-plane capacity and its characterisation in terms
of the Brownian motion (without proof).

c) By using for example the extension property of conformal isomorphism, justify
that the mapping-out function gK is locally bounded and deduce that the map
z 7→ gK(z) − z is uniformly bounded.

d) Justifying carefully your arguments, prove the inequality Im(gK(z)) 6 Im(z).

e) Let τR := inf{t > 0 : Im(Bt) = R or Bt /∈ H}. Show that

Im(gK(z)) = lim
R→+∞

R P(Im(BτR) = R).

4

Let (γt)t>0 be an SLE(4) path and write γ∗ = {γt : t ∈ (0,∞)}. Fix z ∈ H and set
Zt = gt(z) − ξt, where (gt)t>0 and (ξt)t>0 are the associated Loewner flow and transform
respectively. By considering a suitable transformation of the process (Zt)t>0, show that
z 6∈ γ∗ almost surely.

Show further that the process (arg(Zt))t>0 is a martingale.

It is known that (γt)t>0 is a simple path and γt → ∞ as t → ∞ almost surely. Find
the probability that z is in the left connected component of H \ γ∗.
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