MATHEMATICAL TRIPOS Part III

Thursday, 5 June, 2014 9:00 am to 11:00 am

PAPER 29

SCHRAMM–LOEWNER EVOLUTIONS

There are FOUR questions in total.

The questions carry equal weight.

Attempt **THREE** questions.

If you submit answers to **FOUR** questions, then your overall mark will be determined by the best **THREE** answers you submit.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

What is meant by a compact \mathbb{H} -hull?

What does it mean to say that a random family of compact \mathbb{H} -hulls $(K_t)_{t\geq 0}$ is a Schramm–Loewner evolution?

Show that, if $(K_t)_{t\geq 0}$ is a Schramm-Loewner evolution, then $(K_t)_{t\geq 0}$ is scaleinvariant and has the domain Markov property. If you rely on any statements identifying Loewner transforms, these should be justified.

Show that, moreover, these properties characterize Schramm–Loewner evolutions, in a sense which you should make precise.

$\mathbf{2}$

Let $\alpha \in (0, 2\pi]$ and introduce the open cone $W_{\alpha} := \{re^{i\theta}, r > 0, \theta \in (-\alpha/2, \alpha/2)\}$. Let *B* be a complex Brownian motion started at 1. For r > 1, denote by T(r) the first exit time of the ball of radius *r* centered at 0 i.e. $T(r) := \inf\{t \ge 0, |B_t| = r\}$. We would like to compute the probability that the complex Brownian motion exits the disk before leaving the cone i.e. $\mathbb{P}_1(B[0, T(r)] \subseteq W_{\alpha})$

a) Show that we can reduce the problem to the case $\alpha = \pi$ thanks to the map $z \mapsto z^{\pi/\alpha}$.

We fix now $\alpha = \pi$. Denote by $S := \inf\{t \ge 0, \operatorname{Re}(B_t) = 0\}$ the first hitting time of the imaginary axis by the Brownian motion.

b) Using a reflection on the imaginary axis, prove that

$$\mathbb{P}_1(T(r) < S) = \mathbb{P}_1(\operatorname{Re}(B(T(r))) > 0) - \mathbb{P}_1(\operatorname{Re}(B(T(r))) < 0).$$

c) With a proper scaling and Möbius transformation, deduce that

$$\mathbb{P}_1(T(r) < S) = \frac{2}{\pi} \operatorname{Arctan}\left(\frac{2r}{r^2 - 1}\right)$$

[You can use the formula:

$$\int_{-\pi/2}^{\pi/2} \frac{r^2 - 1}{1 + r^2 - 2r\cos(\theta)} d\theta = \pi + 2\operatorname{Arctan}\left(\frac{2r}{r^2 - 1}\right)]$$

d) Write down the equivalent formula for an arbitrary α .

CAMBRIDGE

3

a) Let K be a compact \mathbb{H} -hull. What is the definition of the mapping-out function? Show briefly that it is indeed uniquely defined (you can use the results of the lectures about conformal automorphism without proof).

We now denote by g_K the mapping-out function of K.

- b) Write down the definition of the half-plane capacity and its characterisation in terms of the Brownian motion (without proof).
- c) By using for example the extension property of conformal isomorphism, justify that the mapping-out function g_K is locally bounded and deduce that the map $z \mapsto g_K(z) z$ is uniformly bounded.
- d) Justifying carefully your arguments, prove the inequality $\text{Im}(g_K(z)) \leq \text{Im}(z)$.
- e) Let $\tau_R := \inf\{t \ge 0 : \operatorname{Im}(B_t) = R \text{ or } B_t \notin H\}$. Show that

$$\operatorname{Im}(g_K(z)) = \lim_{R \to +\infty} R \mathbb{P}(\operatorname{Im}(B_{\tau_R}) = R).$$

 $\mathbf{4}$

Let $(\gamma_t)_{t\geq 0}$ be an SLE(4) path and write $\gamma^* = \{\gamma_t : t \in (0,\infty)\}$. Fix $z \in \mathbb{H}$ and set $Z_t = g_t(z) - \xi_t$, where $(g_t)_{t\geq 0}$ and $(\xi_t)_{t\geq 0}$ are the associated Loewner flow and transform respectively. By considering a suitable transformation of the process $(Z_t)_{t\geq 0}$, show that $z \notin \gamma^*$ almost surely.

Show further that the process $(\arg(Z_t))_{t\geq 0}$ is a martingale.

It is known that $(\gamma_t)_{t\geq 0}$ is a simple path and $\gamma_t \to \infty$ as $t \to \infty$ almost surely. Find the probability that z is in the left connected component of $\mathbb{H} \setminus \gamma^*$.

END OF PAPER