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1

Let X be a continuous local martingale with X0 = 0, such that E(〈X〉p/2t ) < ∞ for
all t > 0 and p > 2.

(a) By applying Itô’s formula to |Xt|p or otherwise, show that if X is uniformly bounded
then

E(|Xt|p) 6
p(p− 1)

2
E

(

sup
06s6t

|Xs|p−2〈X〉t
)

for all p > 2. Conclude that there is a constant Cp, depending only on p, such that

E

(

sup
06s6t

|Xs|p
)

6 CpE(〈X〉p/2t ). (∗)

Show that inequality (∗) remains valid even if X is unbounded. [You may use without
proof Doob’s inequality: for any continuous martingale M we have

E

(

sup
06s6t

|Ms|p
)

6
pp

(p− 1)p
E(|Mt|p)

for all p > 1.]

(b) Show that Yt = X4
t − 6X2

t 〈X〉t + 3〈X〉2t defines a martingale. Assuming that

E(X2
t ) = t, Cov(X2

t , 〈X〉t) = 0 for all t > 0,

show that E(X4
t ) 6 3t2; furthermore, show that if E(X4

t ) = 3t2 for all t > 0, then X is a
Brownian motion.
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(a) Let (Mt)t>0 be a continuous local martingale with M0 = 0 with respect to a filtration
(Ft)t>0 satisfying the usual conditions. State and prove the Dambis–Dubins–Schwarz
theorem in terms of M under the extra assumption that 〈M〉 is strictly increasing.

(b) Let X and Y be independent Brownian motions, and let

Rt =
√

X2
t + Y 2

t .

Show that there exists a Brownian motion W and an increasing adapted process A such
that

R2
t = 2WA(t) + 2t.

Now let

Zt =

∫ t

0
YsdXs −XsdYs.

Show that there is a Brownian motion B which is independent of W and such that

Zt = BA(t).

3

Let gn(t) =
√
2 cos[(n− 1

2)πt] and hn(t) =
√
2 sin[(n− 1

2)πt], and letW be a Brownian
motion. In this question you may use without proof the fact that the collections (gn)n>1

and (hn)n>1 are both orthonormal bases of L2[0, 1].

(a) Let ξn =
∫ 1
0 gn(t)dWt. Show that the sequence (ξn)n>1 are independentN(0, 1) random

variables.

(b) Show that ξn = (n− 1
2 )π

∫ 1
0 hn(t)Wtdt and hence conclude that

∫ 1

0
W 2

t dt =

∞
∑

n=1

1

(n− 1
2 )

2π2
ξ2n.

(c) Compute the Laplace transform

E(e−λ
∫
1

0
W 2

t
dt)

in terms of λ > 0. [You might find it useful to note that

∞
∏

n=1

(

1 +
x2

(n− 1
2)

2π2

)

= coshx

for all x ∈ R.]
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Let Z be a positive continuous uniformly integrable martingale with Z0 = 1, defined
on a probability space (Ω,F ,P). Define an equivalent measure Q ∼ P on (Ω,F) by the
density

dQ

dP
= Z∞.

Let X be a continuous P-local martingale with X0 = 0, and let

Yt = Xt − 〈logZ,X〉t.

Show that the process Y is a Q-local martingale. [If you use Girsanov’s theorem, you must
prove it.]

Now supposeW is Brownian motion defined on the same probability space (Ω,F ,P)
and suppose that W generates the filtration. Show that there exists a predictable process
α such that

∫ t

0
α2
sds < ∞ almost surely for all t > 0

and such that the process

Ŵt = Wt −
∫ t

0
αsds

is a Q-Brownian motion. [You may appeal to any standard integral representation results if
clearly stated.]

5

LetM be a continuous, non-negative local martingale such thatM0 = 1 and Mt → 0
almost surely as t → ∞.

(a) If M is strictly positive, show that Mt = eXt−〈X〉t/2 for a continuous local martingale
X such that 〈X〉∞ = ∞ almost surely.

(b) For each a > 1, let Ta = inf{t > 0 : Mt > a}. Show that

P(Ta < ∞) = P(sup
t>0

Mt > a) = 1/a.

[Hint: Compute the expected value of Mt∧Ta
= a1{Ta6t} +Mt1{Ta>t}.]

(c) Let W be a Brownian motion. Find the density functions of the following random
variables.

1. sup06t6τ(−b)Wt where τ(−b) = inf{t > 0 : Wt < −b} and b > 0.

2. supt>0(Wt − λt) for λ > 0.
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Consider the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, (∗)

where W is a Brownian motion and the functions b and σ are bounded and smooth.
Assume that for every square-integrable ξ independent of W , there exists a unique strong
solution X such that X0 = ξ and supt>0 E(X

2
t ) < ∞.

Let f : R → R be a smooth function and let u : [0,∞) × R → R be a bounded and
smooth solution of the PDE

∂u

∂t
= b(x)

∂u

∂x
+

1

2
σ(x)2

∂2u

∂x2
,

with boundary condition
u(0, x) = f(x) for all x ∈ R.

(a) Show that u(t, x) = E [f(Xt)|X0 = x]

Suppose b/σ2 is locally integrable and let

p(x) =
C

σ(x)2
exp

(
∫ x

0

2b(s)

σ(s)2
ds

)

where C > 0 is chosen so that
∫∞
−∞ p(x)dx = 1. Assume

∫∞
−∞ x2p(x)dx < ∞.

(b) Briefly show that
∫

u(t, x)p(x)dx =

∫ ∞

−∞
f(x)p(x)dx

for all t > 0. You may integrate by parts and apply Fubini’s theorem without justification.

Now suppose there is a constant k > 0 such that

2(x− y)[b(x) − b(y)] + [σ(x)− σ(y)]2 6 −k(x− y)2.

(c) Let Y be another strong solution of (∗). Show that

E[(Xt − Yt)
2] 6 E[(X0 − Y0)

2]e−kt.

[Hint: You may use this version of Gronwall’s lemma: If h is locally integrable and

h(t) 6 h(s)− k

∫ t

s
h(u)du for all 0 6 s 6 t,

then h(t) 6 h(0)e−kt for all t > 0.]

(d) Show that

u(t, x) →
∫ ∞

−∞
f(y)p(y)dy as t → ∞.

for all x ∈ R.

Part III, Paper 27 [TURN OVER



6

END OF PAPER

Part III, Paper 27


