

MATHEMATICAL TRIPOS Part III

Thursday, 29 May, 2014 1:30 pm to 4:30 pm

PAPER 26

ADVANCED PROBABILITY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

 $\mathbf{1}$

Let X_1, X_2, \ldots be i.i.d. integrable random variables in \mathbb{R} with $\mathbb{E}[X_i] = 0$ and $\mathbb{P}(X_i > 0) > 0$. Let x > 0, $S_0 = x$, and $S_n = x + \sum_{i=1}^n X_i$. For every $0 < r < \infty$ we define

 $\mathbf{2}$

$$\eta = \inf\{n \ge 0 : S_n \le 0 \quad \text{or} \quad S_n \ge r\}.$$

1) Show that $\mathbb{E}[\eta] < \infty$.

[*Hint:* Note that the condition $\mathbb{P}(X_j > 0) > 0$ implies the existence of $\delta > 0$ and $m \in \mathbb{N}$ such that $\mathbb{P}(X_j > r/m) > \delta$.]

- 2) Show that X_{η} is integrable.
- 3) Show that $\mathbb{E}S_{\eta} = x$.

$\mathbf{2}$

1) Let X be an integrable random variable on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{G} \subset \mathcal{F}$ be a σ -algebra. State the definition of the conditional expectation of X given \mathcal{G} .

2) Prove the following version of the Optional Stopping Theorem: Let M be a discrete-time martingale and let T be a bounded stopping time. Then $\mathbb{E}[M_T] = \mathbb{E}[M_0]$.

3) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{G} be a sub σ -algebra. Suppose that X, Y are bounded random variables satisfying

$$\mathbb{E}[Y|\mathcal{G}] = X$$
 a.s. and $\mathbb{E}[X^2] = \mathbb{E}[Y^2].$

Show that X = Y almost surely.

4) Let $(X_n)_n$ be a martingale on the filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_n), \mathbb{P})$ and let T be a stopping time satisfying

$$\mathbb{P}(T < \infty) = 1$$
, $\mathbb{E}[|X_T|] < \infty$ and $\mathbb{E}[|X_n|\mathbf{1}(T > n)] \to 0 \text{ as } n \to \infty$.

Show that $\mathbb{E}[X_T] = \mathbb{E}[X_0]$.

UNIVERSITY OF

3

Let B be a standard Brownian motion in \mathbb{R} and let (\mathcal{F}_t) be its natural filtration.

1) Let $a \neq 0$. Show that $(B_t + at)_t$ is transient, in the sense that, for all $x \in \mathbb{R}$, almost surely the set of times

3

$$\{t \ge 0 : B_t + at = x\}$$

is bounded.

2) Let $M_t = \sup_{0 \le s \le t} B_s$. Find the joint distribution function of (B_t, M_t) , i.e. probabilities of the form $\mathbb{P}(M_t \ge a, B_t \le b)$ for all $a, b \in \mathbb{R}$.

3) Consider the random time

$$\tau = \inf \left\{ t \ge 0 : B_t = \max_{0 \le s \le 1} B_s \right\}.$$

- i) Show that $\tau < 1$ almost surely.
- ii) Is the process $(B_{t+\tau} B_{\tau})_{t \ge 0}$ a Brownian motion?
- iii) Is τ an (\mathcal{F}_t) -stopping time? Justify your answer.

 $\mathbf{4}$

1) Show that Brownian motion is locally α -Hölder continuous for any $\alpha < 1/2$ almost surely. [State carefully any results you appeal to.]

2) Let B be a standard Brownian motion in \mathbb{R} . Show that, almost surely, B is not differentiable at 0.

3) Let B be a standard Brownian motion in \mathbb{R} . Show that almost surely for all $0 < a < b < \infty$, the process B is not monotone on the time interval [a, b].

$\mathbf{5}$

Suppose X_1, X_2, \ldots are i.i.d. random variables with $\mathbb{E}X_1 = 0$ and $\mathbb{E}X_1^2 = 1$. Let $S_n = X_1 + \ldots + X_n$ be the associated random walk with $S_0 = 0$, and let

$$M_n = \max\{S_k, 0 \le k \le n\}$$

be its maximal value up to time n. Show that for all $x \ge 0$

$$\lim_{n \to \infty} \mathbb{P}(M_n \ge x\sqrt{n}) = \frac{2}{\sqrt{2\pi}} \int_x^\infty e^{-y^2/2} \, dy.$$

[State carefully any results from the course you appeal to without including their proofs.]

[TURN OVER

UNIVERSITY OF

4

6

a) State the definition of a Lévy process and a Poisson random measure.

b) Prove that the sum of two independent Lévy processes is again a Lévy process.

c) Let a, b, and c be non-negative real parameters, and let $X = (X_t : t \ge 0)$ be a Lévy process with characteristic function given by

$$\phi_{X_t}(u) = \exp\left[t\left(a\cos(bu) + ce^{iu} - a - c(1 - iu)\right)\right].$$

Find a representation of X in terms of a Poisson random measure, and describe the sample paths of the process X.

END OF PAPER