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1

Let X1,X2, . . . be i.i.d. integrable random variables in R with E[Xi] = 0 and
P(Xi > 0) > 0. Let x > 0, S0 = x, and Sn = x +

∑n
i=1

Xi. For every 0 < r < ∞
we define

η = inf{n > 0 : Sn 6 0 or Sn > r}.

1) Show that E[η] < ∞.
[Hint: Note that the condition P(Xj > 0) > 0 implies the existence of δ > 0 and m ∈ N

such that P(Xj > r/m) > δ.]

2) Show that Xη is integrable.

3) Show that ESη = x.

2

1) Let X be an integrable random variable on a probability space (Ω,F ,P), and let
G ⊂ F be a σ-algebra. State the definition of the conditional expectation of X given G.

2) Prove the following version of the Optional Stopping Theorem: Let M be a
discrete-time martingale and let T be a bounded stopping time. Then E[MT ] = E[M0].

3) Let (Ω,F ,P) be a probability space and let G be a sub σ-algebra. Suppose that
X,Y are bounded random variables satisfying

E[Y |G] = X a.s. and E[X2] = E[Y 2].

Show that X = Y almost surely.

4) Let (Xn)n be a martingale on the filtered probability space (Ω,F , (Fn),P) and
let T be a stopping time satisfying

P(T < ∞) = 1, E[|XT |] < ∞ and E[|Xn|1(T > n)] → 0 asn → ∞.

Show that E[XT ] = E[X0].

Part III, Paper 26



3

3

Let B be a standard Brownian motion in R and let (Ft) be its natural filtration.

1) Let a 6= 0. Show that (Bt + at)t is transient, in the sense that, for all x ∈ R,
almost surely the set of times

{t > 0 : Bt + at = x}
is bounded.

2) Let Mt = sup06s6tBs. Find the joint distribution function of (Bt,Mt), i.e.
probabilities of the form P(Mt > a,Bt 6 b) for all a, b ∈ R.

3) Consider the random time

τ = inf

{

t > 0 : Bt = max
06s61

Bs

}

.

i) Show that τ < 1 almost surely.

ii) Is the process (Bt+τ −Bτ )t>0 a Brownian motion?

iii) Is τ an (Ft)-stopping time? Justify your answer.

4

1) Show that Brownian motion is locally α-Hölder continuous for any α < 1/2
almost surely. [State carefully any results you appeal to.]

2) Let B be a standard Brownian motion in R. Show that, almost surely, B is not
differentiable at 0.

3) Let B be a standard Brownian motion in R. Show that almost surely for all
0 < a < b < ∞, the process B is not monotone on the time interval [a, b].

5

Suppose X1,X2, . . . are i.i.d. random variables with EX1 = 0 and EX2
1 = 1. Let

Sn = X1 + . . .+Xn be the associated random walk with S0 = 0, and let

Mn = max{Sk, 0 6 k 6 n}

be its maximal value up to time n. Show that for all x > 0

lim
n→∞

P(Mn > x
√
n) =

2√
2π

∫

∞

x
e−y2/2 dy.

[State carefully any results from the course you appeal to without including their proofs.]
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a) State the definition of a Lévy process and a Poisson random measure.

b) Prove that the sum of two independent Lévy processes is again a Lévy process.

c) Let a, b, and c be non-negative real parameters, and let X = (Xt : t > 0) be a
Lévy process with characteristic function given by

φXt
(u) = exp

[

t
(

a cos(bu) + ceiu − a− c(1− iu)
)]

.

Find a representation of X in terms of a Poisson random measure, and describe the sample
paths of the process X.
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