MATHEMATICAL TRIPOS Part III

Friday, 6 June, 2014 9:00 am to 12:00 pm

PAPER 24

ALGEBRAIC NUMBER THEORY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

What is an *absolute value* on a field K? What does it mean to say that an absolute value is *nonarchimedean*? What does it mean to say that two absolute values are *equivalent*? Show that there is a bijection between the set of equivalence classes of nonarchimedean absolute values on K and the set of equivalence classes of valuations on K.

Show that any nonarchimedean absolute value of \mathbb{Q} is equivalent to some *p*-adic absolute value.

Let K be complete with respect to a nonarchimedean absolute value. What is the valuation ring R of K? Show that R is compact (with respect to the valuation topology) if and only if (i) K is discretely valued, and (ii) the residue field of K is finite.

$\mathbf{2}$

Let L/K be a finite separable extension of fields complete with respect to a discrete valuation. Define the *inverse different* of L/K, and show that it is the inverse of an ideal $\mathcal{D}_{L/K}$ of \mathfrak{o}_L .

Suppose that $\mathfrak{o}_L = \mathfrak{o}_K[x]$, and that g is the minimal polynomial of x over K. Show that $\mathcal{D}_{L/K} = g'(x)\mathfrak{o}_L$. Deduce that if L/K is totally ramified of degree n with residue characteristic p, where (p, n) = 1, then $\mathcal{D}_{L/K} = \pi_L^{n-1}\mathfrak{o}_L$.

Compute, for any positive integer r, the different of the extension $K_r = \mathbb{Q}_p(\zeta_{p^r})/\mathbb{Q}_p$, where ζ_{p^r} is a primitive p^r -th root of unity.

[You may assume without proof that for a finite separable extension of fields, the trace form is non-degenerate.]

3

Let p be an odd prime and $K = \mathbb{Q}_p(\zeta_p), \pi_K = 1 - \zeta_p$.

(i) Show that if $1 \leq i \leq p-1$ then $(1-\zeta_p^i)/(1-\zeta_p) \equiv i \pmod{\pi_K}$. Deduce that $(1-\zeta_p)^{p-1} = -pu$ for some $u \in 1 + \pi_K \mathfrak{o}_K$.

(ii) Use Hensel's Lemma to show that for every $u \in 1 + \pi_K \mathfrak{o}_K$ there exists $v \in \mathfrak{o}_K^*$ with $v^{p-1} = u$, and deduce that $K = \mathbb{Q}_p(\sqrt[p-1]{-p})$.

(iii) Let $L = \mathbb{Q}_p(\sqrt{p(p-1)}/p)$. Deduce that L/\mathbb{Q}_p is the splitting field of $X^p - p$. Find the ramification groups of L/\mathbb{Q}_p .

UNIVERSITY OF

 $\mathbf{4}$

Define the group of *ideles* J_K of a number field K. What is the topology on J_K ? Show that K^* is a discrete subgroup of J_K . Let

$$U_K = \prod_{v \text{ infinite}} K_v^* \times \prod_{v \text{ finite}} \mathfrak{O}_v^*.$$

Show that J_K/K^*U_K is isomorphic to the class group of K.

Assuming the compactness of J_K^1/K^* , show that the class group of K is finite, and give an outline proof of Dirichlet's Unit Theorem.

$\mathbf{5}$

Let F/\mathbb{Q}_p be a finite extension, with valuation ring \mathfrak{o}_F and uniformiser π_F . What is the *Schwartz space* $\mathcal{S}(F)$? For $f \in \mathcal{S}(F)$, explain carefully what is meant by the Fourier transform of f.

Let $a \in F$ and $n \in \mathbb{Z}$. Compute the Fourier transform of the characteristic function of $a + \pi_F^n \mathfrak{o}_F$. Deduce that for every $f \in \mathcal{S}(F)$, its Fourier transform \hat{f} also belongs to $\mathcal{S}(F)$, and that (for appropriate choices of Haar measure and additive character) $\hat{f}(x) = f(-x)$.

END OF PAPER