

MATHEMATICAL TRIPOS Part III

Thursday, 5 June, 2014 1:30 pm to 4:30 pm

PAPER 21

COMPUTABILITY AND LOGIC

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Prove Tennenbaum's theorem that there is no recursive nonstandard model of Peano Arithmetic.

$\mathbf{2}$

(i) Prove that, for every regular language L, there is a unique minimal FDA that recognises it.

(ii) An **interleaving** of two words w_1 and w_2 is a word obtained by inserting the characters from w_1 into w_2 in the order in which they appear in w_1 . Thus, for example, both the strings b0a1c and ba01c are interleavings of the two strings bac and 01.

Now let L_1 and L_2 be regular languages over alphabets Σ_1 and Σ_2 respectively. Let the *interleaving* $L_1 \oplus L_2$ of two languages L_1 and L_2 be the set of words that can be obtained by interleaving words from L_1 with words from L_2 .

If L_1 and L_2 are both regular must $L_1 \oplus L_2$ be regular?

3

Prove Scott's Isomorphism Theorem for $\mathcal{L}_{\omega_1,\omega}$.

$\mathbf{4}$

(i) Let $<_A$ and $<_B$ be recursive (*i.e.* decidable sets of ordered pairs) dense linear orderings of \mathbb{N} without endpoints. Must there exist a recursive isomorphism between them?

(ii) Find a natural deduction proof for $((((A \to B) \to A) \to A) \to B) \to B$ using only the two rules for \to and the "identity rule": $\frac{A - B}{A}$

Then decorate your proof appropriately with λ -terms.

$\mathbf{5}$

(i) State and prove Kruskal's theorem on the wellquasiordering of trees over a wellquasiorder.

(ii) If $\langle X, \leq_X \rangle$ is a wellquasiorder, must the relation $X' \leq X''$ iff $(\forall x' \in X')(\exists x'' \in X')(x' \leq_X x'')$ be a wellquasiorder?

3

END OF PAPER

Part III, Paper 21