

MATHEMATICAL TRIPOS Part III

Thursday, 29 May, 2014 1:30 pm to 4:30 pm

PAPER 19

TOPICS IN SET THEORY

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

- (i) Define carefully any <u>two</u> of the following three italicized concepts:
 - (a) the formula $\varphi(x_0, \ldots, x_{n-1})$ is a Δ_1 -formula in the language of ZFC;
 - (b) the set $X \subseteq \mathbb{R}$ is a Sierpinski set;
 - (c) the *Reflection Principle* for the cumulative hierarchy $\{V_{\alpha} : \alpha \in Ord\}$.
- (ii) Suppose κ is an infinite cardinal. For a set X, let $[X]^{<\kappa} = \{Y : Y \subseteq X, |Y| < \kappa\}$. Let $A_{<\kappa}(X)$ be the following assertion:

for every function $f: X \to [X]^{<\kappa}$ there exist x_1 and x_2 such that

$$x_1 \notin f(x_2)$$
 and $x_2 \notin f(x_1)$.

- (a) Prove (in ZFC) that $2^{\aleph_0} > \aleph_1$ implies $A_{<\aleph_1}(\mathbb{R})$.
- (b) Show the converse is also true: $A_{\langle \aleph_1}(\mathbb{R})$ implies $2^{\aleph_0} > \aleph_1$.
- (c) Deduce that $A_{\leq\aleph_1}(\mathbb{R})$ is independent of ZFC, stating carefully any independence results that you require.
- (iii) Let ZFC^2 denote the second-order axiomatic system obtained from ZFC in which the Replacement Schema is expressed as the following single axiom with a universal second-order quantifier: $(\forall C)(\forall z \forall u \forall v)(\langle z, v \rangle \in C \land \langle z, u \rangle \in C \Rightarrow v = u) \Rightarrow \exists x \forall y (y \in x \Leftrightarrow \exists z(z \in a \land \langle z, y \rangle \in C))$, i.e. if C is a functional class and a is a set, then $\{C(z) : z \in a\}$, the image of a under C, is also a set. The intended interpretation of the second-order variables ranges over arbitrary subsets of the domain.

Show that if λ is a cardinal such that $V_{\lambda} \models ZFC^2$, then λ is strongly inaccessible.

- $\mathbf{2}$
 - (i) Define or state (as appropriate) any <u>two</u> of the following three italicized concepts or assertions:
 - (a) the family $\{A_{\alpha,n} : \alpha < \omega_1, n < \omega\}$ of sets is an Ulam matrix on ω_1 ;
 - (b) *König's Theorem* on cofinality and cardinal exponentiation;
 - (c) the binary predicate $x \in L_{\alpha}$.
- (ii) Show that $\aleph_1 \leq \mathfrak{b} \leq \mathfrak{a} \leq 2^{\aleph_0}$, where \mathfrak{a} and \mathfrak{b} are the almost disjointness number and the bounding number associated with the quasi-order \preceq^* on the set ${}^{\omega}\omega$, defined as follows:

 $f \preceq^* g \Leftrightarrow f(n) \leqslant g(n)$ for all but finitely many $n \in \omega$.

- (iii) (a) Prove that $ZF \vdash \varphi^L$ where φ is an instance of the axiom of Separation.
 - (b) Suppose that $\mathbb{A} = (A, \in)$ is a standard model of ZF. Stating precisely any absoluteness results to which you may appeal, show

$$L^{\mathbb{A}} = \bigcup_{\alpha \in A} L_{\alpha}.$$

- (c) Deduce that L is the smallest standard model of ZF containing all the ordinals. (You may assume without proof that $L \models ZF$.)
- (iv) Suppose $\kappa = cf(\kappa) > \aleph_0$. Prove that there exists a family $\{S_\alpha \subseteq \kappa : \alpha < \kappa\}$ of pairwise disjoint stationary sets such that $\kappa = \bigcup_{\alpha < \kappa} S_\alpha$.

3

- (i) Define carefully any two of the following three italicized expressions:
 - (a) the *Gimel Hypothesis*;
 - (b) the assertion MA_{κ} , where κ is a cardinal;
 - (c) the tree $\mathbb{T} = (T, <_{\mathbb{T}})$ is well-pruned.
- (ii) Show that if $\delta > 0$ is a limit ordinal, then $cf(\beth_{\delta}) = cf(\delta)$.
- (iii) Show that the Gimel function $\mathfrak{I}(\kappa)$ determines the class functions $\kappa \to 2^{\kappa}$ and $(\kappa, \lambda) \to \kappa^{\lambda}$.
- (iv) (a) Suppose that $\mathbb{T} = (T, <_{\mathbb{T}})$ is a κ -tree. Show that \mathbb{T} has a well-pruned κ -subtree (i.e. a subtree that is a κ -tree and is well-pruned).
 - (b) Deduce that if there is an \aleph_1 -Suslin tree and $2^{\aleph_0} > \aleph_1$, then Martin's Axiom fails.

$\mathbf{4}$

- (i) Define carefully any two of the following three italicized expressions:
 - (a) the partition relation $\kappa \to (\lambda)^{\alpha}_{\beta}$ for cardinals $\alpha, \beta, \kappa, \lambda$;
 - (b) the prediction principle \clubsuit_S for a stationary subset $S \subseteq \omega_1$;
 - (c) the tree $\mathbb{T} = (T, <_{\mathbb{T}})$ has unique limits.
- (ii) Suppose that $\mathbb{T} = (T, <_{\mathbb{T}})$ is a normal (\aleph_1, \aleph_1) -tree with no uncountable anti-chains. Prove that \mathbb{T} is \aleph_1 -Suslin.
- (iii) Show that ◊ implies that Suslin's Hypothesis fails. (It suffices to outline the principal elements in the construction, but you should provide full details of the verification of the countable chain condition.)
- (iv) Suppose $\kappa = cf(\kappa) > \aleph_0$ and $\{A_\alpha : \alpha < \kappa\}$ is a κ -filtration of a set A of cardinality κ . Prove the following variant of Fodor's Lemma: if S is a stationary subset of κ and $f : S \to A$ is a function such that for all $\alpha \in S$, $f(\alpha) \in A_\alpha$, then there exists a stationary $S' \subseteq S$ such that $f \upharpoonright S'$ is constant.

5

- (i) Let G be generic in the forcing \mathbb{P} over a countable transitive model M. Define or state carefully any <u>two</u> of the following three italicized concepts or assertions:
 - (a) the set τ is a \mathbb{P} -name;
 - (b) the Truth Lemma for the generic extension $\mathbb{M}[G]$;
 - (c) the forcing \mathbb{P} preserves cofinalities.
- (ii) Suppose that the Axiom of Choice AC holds in the countable transitive model \mathbb{M} . Suppose G is generic in \mathbb{P} over \mathbb{M} . Prove that $\mathbb{M}[G] \models AC$.
- (iii) Show that $ZFC + 2^{\aleph_0} = 2^{\aleph_1} = \aleph_3$ is consistent relative to ZFC + GCH.
- (iv) *Kurepa's Hypothesis* states that there exists an \aleph_1 -tree with at least \aleph_2 paths (i.e. maximal chains of cardinality \aleph_1).

Suppose that κ is strongly inaccessible in the countable transitive model M.

Let H be generic in the forcing $Lv(\kappa)$ over M, where $Lv(\kappa)$ is the Levy collapse

 $\{p: p \text{ is a finite function}, dom(p) \subseteq \kappa \times \omega, \text{ and } (\forall \langle \alpha, n \rangle \in dom(p))(p(\alpha, n) \in \alpha)\}$

with the partial ordering $p \leq q$ iff $p \subseteq q$.

- (a) What is the cardinality of a maximal antichain in $Lv(\kappa)$?
- (b) Prove that $\kappa = \aleph_1^{\mathbb{M}[H]}$.
- (c) By considering the full binary tree of height κ in \mathbb{M} or otherwise, determine whether Kurepa's Hypothesis is true in the generic extension $\mathbb{M}[H]$.

6

- (i) Let P be a forcing in the countable transitive model M. Define or state carefully any two of the following three italicized concepts or results:
 - (a) the forcing \mathbb{P} collapses the cardinal κ ;
 - (b) the set G is generic in \mathbb{P} over \mathbb{M} ;
 - (c) the Δ -System Lemma.
- (ii) Suppose that G is generic in the forcing \mathbb{P} over the countable transitive model \mathbb{M} , and \mathbb{P} is κ -complete in \mathbb{M} , where $\kappa = cf(\kappa) > \aleph_0$. Let $\alpha \in Ord, \alpha < \kappa, B \in M$. Show that $({}^{\alpha}B)^{\mathbb{M}} = ({}^{\alpha}B)^{\mathbb{M}[G]}$, i.e. if $f : \alpha \to B, f \in \mathbb{M}[G]$, then $f \in \mathbb{M}$.
- (iii) Prove that ZFC + GCH does not imply V = L.
- (iv) (a) Show that there exist functions $\{e_{\alpha} : \alpha < \omega_1\}$ such that each $e_{\alpha} : \alpha \to \omega$ is injective and for $\beta < \alpha, e_{\beta}$ and $e_{\alpha} \upharpoonright \beta$ are identical at all but finitely many points.
 - (b) Considering the tree $\mathbb{T} = \{e_{\alpha} \mid \beta : \beta \leq \alpha < \omega_1\}$ with the functions from part (a) partially ordered by $f \prec g$ iff g is a proper extension of f, or adducing any other valid reasons, prove that there exists an Aronszajn tree, i.e. an \aleph_1 -tree with no uncountable branches.

END OF PAPER