MATHEMATICAL TRIPOS Part III

Monday, 2 June, 2014 1:30 pm to 4:30 pm

PAPER 18

CATEGORY THEORY

Attempt no more than **FIVE** questions. There are **EIGHT** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

- (a) Define the terms monomorphism, epimorphism, regular epimorphism and isomorphism. In a category with products, show that the diagonal $(1,1): A \to A \times A$ defined by $\pi_1(1,1) = 1_A$ and $\pi_2(1,1) = 1_A$ is a monomorphism.
- (b) We define a *strong epimorphism* to be any morphism $g: C \to D$ in a category C such that for any commutative diagram

with f monic, there is a (necessarily unique) lifting $t: D \to A$ satisfying tg = k and ft = l. (Note that here we do not assume that g is an epimorphism.)

Show that every regular epimorphism is a strong epimorphism. Show that any morphism which is both a monomorphism and a strong epimorphism is an isomorphism. Show that if the composite gf is a strong epimorphism, then g is also a strong epimorphism. Deduce that if f = ig is a strong epimorphism and i is monic, then i is an isomorphism.

(c) Let C be a category with binary products. Show that any strong epimorphism is indeed an epimorphism.

2

- (a) State the Yoneda Lemma and explicitly give the isomorphism in both directions.
- (b) Let $F, G: \mathcal{C} \to \text{Set}$ be functors. Prove that a natural transformation $\alpha: F \to G$ is epic in the functor category $[\mathcal{C}, \text{Set}]$ if and only if each component α_A is epic in Set. [You may assume that $\text{ev}_A: [\mathcal{C}, \mathcal{D}] \to \mathcal{D}$ preserves all colimits which exist in \mathcal{D} , but should prove all other statements carefully.]
- (c) Define a projective object in a category C. Prove that a coproduct of projective objects is projective.
- (d) Let C be locally small. Show that a representable functor C(A, -) is projective in [C, Set].

CAMBRIDGE

3

Let \mathcal{C} be a locally small category and $U \colon \mathcal{C} \to \text{Set}$ a functor.

- (a) Define what it means for the functor U to be representable. Prove that the identity functor 1_{Set} : Set \rightarrow Set is representable.
- (b) Prove that, in the category Set, any set is a coproduct of copies of the one-element set 1.
- (c) Prove: U has a left adjoint \Rightarrow U is representable.
- (d) Prove: U is representable \Rightarrow U preserves limits.
- (e) If \mathcal{C} has small coproducts, prove: U is representable \Rightarrow U has a left adjoint.

$\mathbf{4}$

Consider two functors $\mathcal{C} \xrightarrow[G]{F} \mathcal{D}$ and natural transformations $\eta: 1_{\mathcal{C}} \to GF, \varepsilon: FG \to 1_{\mathcal{D}}$.

(a) Prove that F is left adjoint to G (in symbols $F \dashv G$) if and only if η and ε satisfy the triangular identities

(b) Suppose now that $G \xrightarrow{\eta_G} GFG \xrightarrow{G\varepsilon} G$ is the identity on G, and show that the composite $F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon_F} F$ is an idempotent (in the functor category $[\mathcal{C}, \mathcal{D}]$). Show that G has a left adjoint if and only if this idempotent splits.

[Recall that an *idempotent* is a morphism $e: E \to E$ with ee = e, and such an idempotent splits if there exist $f: E \to F$ and $g: F \to E$ with e = gf and $fg = 1_F$. *Hint:* For \Rightarrow of the last statement, consider $H \dashv G$ with unit $\psi: 1 \to GF$ and counit $\varphi: HG \to 1$, and use ψ, φ, η and ε to build candidate natural transformations $F \to H \to F$.]

UNIVERSITY OF CAMBRIDGE

 $\mathbf{5}$

Let \mathcal{C} and \mathcal{D} be categories and consider a functor $G: \mathcal{D} \to \mathcal{C}$.

Define, for each object A of C, the category $(A \downarrow G)$.

State and prove the General Adjoint Functor Theorem.

[You may assume results about limits in $(A \downarrow G)$ and standard results about adjoints (other than any Adjoint Functor Theorem), provided they are clearly stated.]

6

- (a) Define a monad \mathbb{T} on a category \mathcal{C} , and the category of \mathbb{T} -algebras. Describe the list monad on Set and determine its category of algebras.
- (b) Show that the forgetful functor from the category $\mathcal{C}^{\mathbb{T}}$ of \mathbb{T} -algebras to \mathcal{C} has a left adjoint and that the adjunction induces the monad \mathbb{T} .
- (c) Let \mathbb{T} be a monad on \mathcal{C} . Prove carefully that any \mathbb{T} -algebra is a coequaliser of a diagram of free algebras.

[You may assume any standard results from the course provided they are clearly stated.]

7

- (a) Define what an *isomorphism* in a category C is, and when a category C is a *groupoid*. Show that a morphism $f: A \to B$ with $gf = 1_A$ and $fh = 1_B$ for $g, h: B \to A$ must be an isomorphism.
- (b) Define a *preadditive* category \mathcal{A} .

Let $A \xrightarrow[g]{f} B$ be a reflexive pair in the preadditive category \mathcal{A} , i.e. $fr = gr = 1_B$. Prove that this has the structure of an internal groupoid: that is, for any object C of \mathcal{A} , $\mathcal{A}(C, B)$ is the set of objects of a groupoid with set of morphism $\mathcal{A}(C, A)$ and domain and codomain given by composition with f and g respectively.

[Hint: For a composable pair of morphism $a, b \in \mathcal{A}(C, A)$, their composition is given by $a+b-rga \in \mathcal{A}(C, A)$. You should however check that this has the correct domain and codomain.]

UNIVERSITY OF

- 8
- (a) Let \mathcal{C} be a pointed category. Define the *cokernel* of a morphism $f: A \to B$ in \mathcal{C} . Now let \mathcal{C} be pointed with cokernels. Given a commutative diagram

with $g = \operatorname{coker} f$ and $g' = \operatorname{coker} f'$, show that if the left hand square is a pushout, then c is an isomorphism.

- (b) Prove that in an abelian category, a morphism $f: A \to B$ is an epimorphism if and only if its cokernel is zero. Deduce that in an abelian category, pushouts reflect epimorphisms.
- (c) In an abelian category \mathcal{A} , consider a square

with g an epimorphism. Prove that if this square is a pullback, then it is also a pushout. Deduce that in an abelian category, pullbacks preserve epimorphisms. Deduce also that, in an abelian category, any epimorphism is the coequaliser of its kernel pair.

END OF PAPER