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(a) Define the terms monomorphism, epimorphism, regular epimorphism and isomor-

phism. In a category with products, show that the diagonal (1, 1): A→ A×A

defined by π1(1, 1) = 1A and π2(1, 1) = 1A is a monomorphism.

(b) We define a strong epimorphism to be any morphism g : C → D in a category C

such that for any commutative diagram

C
k //

g

��

A

f

��

D
l

// B

with f monic, there is a (necessarily unique) lifting t : D → A satisfying tg = k and
ft = l. (Note that here we do not assume that g is an epimorphism.)

Show that every regular epimorphism is a strong epimorphism. Show that any mor-
phism which is both a monomorphism and a strong epimorphism is an isomorphism.
Show that if the composite gf is a strong epimorphism, then g is also a strong epi-
morphism. Deduce that if f = ig is a strong epimorphism and i is monic, then i is
an isomorphism.

(c) Let C be a category with binary products. Show that any strong epimorphism is
indeed an epimorphism.

2

(a) State the Yoneda Lemma and explicitly give the isomorphism in both directions.

(b) Let F,G : C → Set be functors. Prove that a natural transformation α : F → G is
epic in the functor category [C,Set] if and only if each component αA is epic in Set.

[You may assume that evA : [C,D] → D preserves all colimits which exist in D, but
should prove all other statements carefully.]

(c) Define a projective object in a category C. Prove that a coproduct of projective
objects is projective.

(d) Let C be locally small. Show that a representable functor C(A,−) is projective in
[C,Set].
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Let C be a locally small category and U : C → Set a functor.

(a) Define what it means for the functor U to be representable. Prove that the identity
functor 1Set : Set → Set is representable.

(b) Prove that, in the category Set, any set is a coproduct of copies of the one-element
set 1.

(c) Prove: U has a left adjoint ⇒ U is representable.

(d) Prove: U is representable ⇒ U preserves limits.

(e) If C has small coproducts, prove: U is representable ⇒ U has a left adjoint.

4

Consider two functors C
F //

D
G

oo and natural transformations η : 1C → GF , ε : FG→ 1D.

(a) Prove that F is left adjoint to G (in symbols F ⊣ G) if and only if η and ε satisfy
the triangular identities

F
Fη

//

1F
""F

F

F

F

F

F

F

F

F

FGF

εF

��

F

and G
ηG //

1G
""F

F

F

F

F

F

F

F

F

GFG

Gε
��

G

(b) Suppose now that G
ηG //GFG

Gε //G is the identity on G, and show that the

composite F
Fη

//FGF
εF //F is an idempotent (in the functor category [C,D]).

Show that G has a left adjoint if and only if this idempotent splits.

[Recall that an idempotent is a morphism e : E → E with ee = e, and such an
idempotent splits if there exist f : E → F and g : F → E with e = gf and fg = 1F .

Hint: For ⇒ of the last statement, consider H ⊣ G with unit ψ : 1 → GF and

counit ϕ : HG→ 1, and use ψ, ϕ, η and ε to build candidate natural transformations

F → H → F .]
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Let C and D be categories and consider a functor G : D → C.

Define, for each object A of C, the category (A ↓ G).

State and prove the General Adjoint Functor Theorem.

[You may assume results about limits in (A ↓ G) and standard results about adjoints
(other than any Adjoint Functor Theorem), provided they are clearly stated.]

6

(a) Define a monad T on a category C, and the category of T-algebras. Describe the list
monad on Set and determine its category of algebras.

(b) Show that the forgetful functor from the category CT of T-algebras to C has a left
adjoint and that the adjunction induces the monad T.

(c) Let T be a monad on C. Prove carefully that any T-algebra is a coequaliser of a
diagram of free algebras.

[You may assume any standard results from the course provided they are clearly
stated.]

7

(a) Define what an isomorphism in a category C is, and when a category C is a groupoid.
Show that a morphism f : A→ B with gf = 1A and fh = 1B for g, h : B → A must
be an isomorphism.

(b) Define a preadditive category A.

Let A
f

//

g
//Broo be a reflexive pair in the preadditive category A, i.e. fr = gr = 1B .

Prove that this has the structure of an internal groupoid: that is, for any object C
of A, A(C,B) is the set of objects of a groupoid with set of morphism A(C,A) and
domain and codomain given by composition with f and g respectively.

[Hint: For a composable pair of morphism a, b ∈ A(C,A), their composition is given

by a+b−rga ∈ A(C,A). You should however check that this has the correct domain

and codomain.]
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(a) Let C be a pointed category. Define the cokernel of a morphism f : A→ B in C.
Now let C be pointed with cokernels. Given a commutative diagram

A
f

//

a

��

B

b
��

g
// C

c

��

A′

f ′

// B′

g′
// C ′

with g = cokerf and g′ = cokerf ′, show that if the left hand square is a pushout,
then c is an isomorphism.

(b) Prove that in an abelian category, a morphism f : A→ B is an epimorphism if and
only if its cokernel is zero. Deduce that in an abelian category, pushouts reflect
epimorphisms.

(c) In an abelian category A, consider a square

A
f

//

h
��

B

g

��

C
k

// D

with g an epimorphism. Prove that if this square is a pullback, then it is also a
pushout. Deduce that in an abelian category, pullbacks preserve epimorphisms.
Deduce also that, in an abelian category, any epimorphism is the coequaliser of its
kernel pair.

END OF PAPER
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