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1

(a) Explain how the Euler–Lagrange equations in Lagrangian mechanics are derived
from a variational principle. (Include a proof.)

(b) Describe how Hamiltonian mechanics emerges from Lagrangian mechanics.
(Include a proof.)

2

(a) What is a symplectic manifold?

(b) For which n does the n-sphere Sn admit a symplectic structure? Justify your
answer.

(c) How many symplectic structures are there on the Möbius strip? Justify your
answer.

(d) What is a symplectic vector field on a symplectic manifold? What is a
Hamiltonian vector field on a symplectic manifold? Consider the symplectic 2-torus
(T2 = R

2/Z2, ω = dx ∧ dy). Is the vector field ∂

∂x
on T

2 symplectic? Is it Hamiltonian?
Justify your answer.

(e) Let (M,ω) be a 2n-dimensional compact symplectic manifold without boundary,
and let H ∈ C∞(M) be a smooth function. What is the Hamiltonian flow φt

H
of H? Prove

that the Hamiltonian flow φt
H

preserves the symplectic volume 1
n!
ωn.

3

(a) Briefly explain Moser’s trick.

(b) State and prove Darboux’s theorem.
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4

(a) Briefly explain how the cotangent bundle T ∗L of a manifold L can be equipped
with a canonical symplectic form ωcan.

(b) What is a Lagrangian submanifold of a symplectic manifold? Show that the
graph of a 1-form σ on a manifold L, where σ is viewed as a section σ : L → T ∗L, is
Lagrangian in (T ∗L,ωcan) if and only if σ is closed.

(c) Let (M,ω) be a compact symplectic manifold without boundary, and assume
that H1

dR
(M) = 0. Prove that any symplectomorphism of (M,ω) that is sufficiently C1-

close to the identity has at least two fixed points. [You may use any result from the lecture
without proof, provided you state it clearly.]

5

(a) What does it mean for a Lie group action on a symplectic manifold to be
Hamiltonian?

(b) Define the Fubini–Study form on projective space CPn.

(c) Show how the Fubini–Study form on CPn arises from a Hamiltonian group action
on C

n+1. [You may use without proof the Marsden–Weinstein theorem, provided you state
it clearly.]

6

(a) What is an ω-compatible almost complex structure on a symplectic manifold
(M,ω)?

(b) What is a J-holomorphic curve?

(c) Define the energy of a J-holomorphic curve. State and prove the energy identity
for J-holomorphic curves.

(d) Let (Σ, j) be a compact connected Riemann surface without boundary. Let J be
an ω0-compatible almost complex structure on (R2n, ω0), where ω0 denotes the standard
symplectic form. Does there exist a nonconstant J-holomorphic curve u : Σ → R

2n?
Justify your answer.
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