

MATHEMATICAL TRIPOS Part III

Thursday, 29 May, 2014 1:30 pm to 4:30 pm

PAPER 15

DIFFERENTIAL GEOMETRY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

State the defining properties of the exterior derivative d and show, using local coordinates, that these properties uniquely determine d.

Define the de Rham cohomology of a manifold.

Prove that the 1st de Rham cohomology of the 2-dimensional sphere is $H^1_{dR}(S^2) = \{0\}$. By considering the quotient map $S^2 \to \mathbb{R}P^2 \cong S^2/\pm 1$, or otherwise, determine the de Rham cohomology groups of $\mathbb{R}P^2$.

[The Poincaré lemma may be assumed provided it is accurately stated. You may assume that the antipodal map of S^2 induces, via pull-back, the multiplication by -1 on $H^2_{dR}(S^2)$.]

$\mathbf{2}$

Define what is meant by a Lie group.

Recall that the complex symplectic group Sp(n) may be defined as the subgroup of unitary matrices $A \in U(2n)$ satisfying $AJA^t = J$, where A^t denotes the transpose of A and $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$ with I the $n \times n$ identity matrix. Explain why $e^{-JBJ} = -Je^B J$ holds for each $n \times n$ complex matrix B. Show that Sp(n) is a manifold, by constructing an appropriate family of charts. Show further that Sp(n) is a Lie group and find its dimension.

Show that Sp(1) is diffeomorphic to S^3 .

[Standard results on the exponent and logarithm of matrices may be used without proof if these are accurately stated.]

3

Show that every real vector bundle over a manifold M can be given an inner product on the fibres, varying smoothly with the fibres (with respect to any local trivialization).

Define what is meant by a bundle morphism $E' \to E''$ covering the identity map of M, where E_i , i = 1, 2 are vector bundles over M. Let $\Gamma(E_i)$ denote the space of smooth sections of E_i . Show that every map $\alpha : \Gamma(E') \to \Gamma(E'')$ which is linear over $C^{\infty}(M)$ is induced by some bundle morphism $F : E' \to E''$, i.e. $\alpha(s) = F \circ s$ for each $s \in \Gamma(E')$.

Are the vector bundles TM and T^*M isomorphic for every manifold M? Justify your answer.

[Existence of partition of unity on M may be assumed provided the result is accurately stated.]

UNIVERSITY OF

 $\mathbf{4}$

Define the Levi–Civita connection on a Riemannian manifold. Prove that every Riemannian manifold (M, g) admits a unique Levi–Civita connection.

3

Let (M, g_M) and (N, g_N) be two Riemannian manifolds. Explain what is meant by the product Riemannian metric $g_M \oplus g_N$ on $M \times N$. Let X be a vector field on M and Y a vector field on N. Prove carefully that, considering X and Y as vector fields on $M \times N$ independent of, respectively, the N coordinates and the M coordinates, we have $D_X Y = 0$ where D is the Levi-Civita connection of $g_M \oplus g_N$.

[You may assume that [X, Y] = 0.]

$\mathbf{5}$

Let (M, g) be an oriented Riemannian manifold. Define the volume form ω_g of g showing that ω_g is well-defined.

Define the Hodge star operator * and compute its square for differential *p*-forms on M. Show that $\int_M (-f * d * \alpha) \omega_g = \int_M g(df, \alpha) \omega_g$, for every compactly supported smooth function f and 1-form α on M.

Define the Laplace–Beltrami operator Δ and the harmonic forms on M. Prove that a differential form β on M is harmonic if and only if $*\beta$ is so. Prove the identity $\Delta(f_1f_2) = f_2\Delta f_1 + f_1\Delta f_2 - 2g(df_1, df_2)$, for functions $f_1, f_2 \in C^{\infty}(M)$.

State the Hodge decomposition theorem. Prove that if M is a compact connected oriented *n*-dimensional manifold, then its *n*-th de Rham cohomology $H^n_{dR}(M)$ is 1-dimensional.

[Stokes' theorem may be used without proof.]

END OF PAPER