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1

State the defining properties of the exterior derivative d and show, using local
coordinates, that these properties uniquely determine d.

Define the de Rham cohomology of a manifold.

Prove that the 1st de Rham cohomology of the 2-dimensional sphere is
H1

dR(S
2) = {0}. By considering the quotient map S2 → RP 2 ∼= S2/ ± 1, or otherwise,

determine the de Rham cohomology groups of RP 2.

[The Poincaré lemma may be assumed provided it is accurately stated. You may

assume that the antipodal map of S2 induces, via pull-back, the multiplication by −1 on

H2

dR(S
2).]

2

Define what is meant by a Lie group.

Recall that the complex symplectic group Sp(n) may be defined as the subgroup of
unitary matrices A ∈ U(2n) satisfying AJAt = J , where At denotes the transpose of A and
J =

(

0 I
−I 0

)

with I the n×n identity matrix. Explain why e−JBJ = −JeBJ holds for each
n× n complex matrix B. Show that Sp(n) is a manifold, by constructing an appropriate
family of charts. Show further that Sp(n) is a Lie group and find its dimension.

Show that Sp(1) is diffeomorphic to S3.

[Standard results on the exponent and logarithm of matrices may be used without

proof if these are accurately stated.]

3

Show that every real vector bundle over a manifold M can be given an inner product
on the fibres, varying smoothly with the fibres (with respect to any local trivialization).

Define what is meant by a bundle morphism E′ → E′′ covering the identity map
of M , where Ei, i = 1, 2 are vector bundles over M . Let Γ(Ei) denote the space of smooth
sections of Ei. Show that every map α : Γ(E′) → Γ(E′′) which is linear over C∞(M) is
induced by some bundle morphism F : E′ → E′′, i.e. α(s) = F ◦ s for each s ∈ Γ(E′).

Are the vector bundles TM and T ∗M isomorphic for every manifold M? Justify
your answer.

[Existence of partition of unity on M may be assumed provided the result is

accurately stated.]
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4

Define the Levi–Civita connection on a Riemannian manifold. Prove that every
Riemannian manifold (M,g) admits a unique Levi–Civita connection.

Let (M,gM ) and (N, gN ) be two Riemannian manifolds. Explain what is meant by
the product Riemannian metric gM ⊕ gN on M ×N . Let X be a vector field on M and Y
a vector field on N . Prove carefully that, considering X and Y as vector fields on M ×N
independent of, respectively, the N coordinates and the M coordinates, we have DXY = 0
where D is the Levi-Civita connection of gM ⊕ gN .

[You may assume that [X,Y ] = 0.]

5

Let (M,g) be an oriented Riemannian manifold. Define the volume form ωg of g
showing that ωg is well-defined.

Define the Hodge star operator ∗ and compute its square for differential p-forms
on M . Show that

∫

M
(−f ∗ d ∗ α)ωg =

∫

M
g(df, α)ωg, for every compactly supported

smooth function f and 1-form α on M .

Define the Laplace–Beltrami operator ∆ and the harmonic forms on M . Prove
that a differential form β on M is harmonic if and only if ∗β is so. Prove the identity
∆(f1f2) = f2∆f1 + f1∆f2 − 2g(df1, df2), for functions f1, f2 ∈ C∞(M).

State the Hodge decomposition theorem. Prove that if M is a compact con-
nected oriented n-dimensional manifold, then its n-th de Rham cohomology Hn

dR(M) is
1-dimensional.

[Stokes’ theorem may be used without proof.]
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