MATHEMATICAL TRIPOS Part III

Tuesday, 3 June, 2014 $\,$ 1:30 pm to 4:30 pm

PAPER 13

ALGEBRAIC GEOMETRY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

For \mathcal{F} a presheaf of abelian groups on a topological space X, describe the construction of the sheafification \mathcal{F}^+ and the corresponding morphism of presheaves $\theta : \mathcal{F} \to \mathcal{F}^+$. State the universal property satisfied by this morphism, and in the case when \mathcal{F} is itself a sheaf show that θ is an isomorphism.

Suppose now that $f: X \to Y$ is a continuous map of topological spaces, that \mathcal{F} is a sheaf of abelian groups on X and \mathcal{G} a sheaf of abelian groups on Y. Describe briefly the construction of the sheaves $f_*\mathcal{F}$ on Y and $f^{-1}\mathcal{G}$ on X.

An *f*-morphism $\phi : \mathcal{G} \to \mathcal{F}$ is defined by giving homomorphisms of abelian groups $\phi(U) : \mathcal{G}(U) \to \mathcal{F}(f^{-1}U)$ for all U open in Y which are compatible with restrictions, namely for $V \subset U$ an inclusion of open sets and $\sigma \in \mathcal{G}(U)$, we have $\phi(V)(\sigma|_V) = (\phi(U)(\sigma))|_{f^{-1}V}$. Show that such an *f*-morphism ϕ induces homomorphisms on stalks $\phi_{f(P)} : \mathcal{G}_{f(P)} \to \mathcal{F}_P$ for all $P \in X$.

Show that there is a natural f-morphism $\theta : \mathcal{G} \to f^{-1}\mathcal{G}$ with the property that any f-morphism $\phi : \mathcal{G} \to \mathcal{F}$ determines a unique morphism $\psi : f^{-1}\mathcal{G} \to \mathcal{F}$ of sheaves on X with $\phi(U) = \psi(f^{-1}U) \circ \theta(U)$ for all U open in Y.

[*Hint:* To define the image of a section $s \in (f^{-1}\mathcal{G})(V)$, you may need to glue together certain sections of \mathcal{F} over some open cover of V.]

Deduce that there is a natural bijection between $\operatorname{Hom}_X(f^{-1}\mathcal{G},\mathcal{F})$ (morphisms of sheaves on X) and $\operatorname{Hom}_Y(\mathcal{G}, f_*\mathcal{F})$.

$\mathbf{2}$

For an affine variety V over an algebraically closed field k, describe briefly (without proofs) one of the two possible constructions for the sheaf of regular functions \mathcal{O}_V . Define briefly what is meant by an algebraic variety X over an algebraically closed field k (you need not define the Zariski topology on $X \times X$) and by a morphism of such varieties. Show that affine varieties are algebraic varieties, and that regular maps between affine varieties give rise to morphisms of varieties in the sense just defined.

Let $\phi : X \to Y$ be a morphism of varieties, and suppose that Y can be covered by open sets U_i such that the induced morphism $\phi^{-1}(U_i) \to U_i$ is an isomorphism of varieties for each *i*; show that ϕ is an isomorphism.

From now on, we suppose that X is a variety over an algebraically closed field k, and A denotes the k-algebra $\Gamma(X, \mathcal{O}_X)$.

For Y an affine variety over k with $B = \Gamma(Y, \mathcal{O}_Y)$, show that any k-algebra homomorphism from B to A induces a morphism of varieties from X to Y.

Now suppose that $f \in A$ and $X_f := \{x \in X : f(x) \neq 0\}$; show that $\Gamma(X_f, \mathcal{O}_X) = A_f$. Suppose that there is a finite set f_1, \ldots, f_r of elements of A which generate the unit ideal, and that X_{f_i} is affine for all i; prove that X is itself affine.

UNIVERSITY OF

3

For (X, \mathcal{O}_X) a variety, define what it means for an \mathcal{O}_X -module \mathcal{F} to be quasicoherent. Let X be an affine variety with coordinate ring A and basic open sets $D(f) = \{x \in X : f(x) \neq 0\}$ for $f \in A$. For each A-module M, recall that an \mathcal{O}_X module \tilde{M} on X may be defined with the property that $\tilde{M}(D(f)) \cong M_f$ for all $f \in A$, with stalks given by the localizations of M at the maximal ideals of A. Prove that an \mathcal{O}_X -module on the affine variety X is quasi-coherent if and only if it is of the form \tilde{M} for some A-module M. Deduce that taking global sections of quasi-coherent sheaves on an affine variety is an exact functor.

For U an open subset of a topological space X and \mathcal{F} a sheaf of abelian groups on X, define the sheaf $_U\mathcal{F}$ on X and the morphism $\mathcal{F} \to _U\mathcal{F}$. With cohomology groups constructed via flabby resolutions, suppose \mathcal{B} is a basis of open sets in X, closed under finite intersections, with $H^j(V, \mathcal{F}|_V) = 0$ for 0 < j < i and for all $V \in \mathcal{B}$; state (without proof) the *locally vanishing principle* for elements of $H^i(X, \mathcal{F})$. If \mathcal{F} a quasi-coherent \mathcal{O}_X -module on an affine variety X, prove that $H^i(X, \mathcal{F}) = 0$ for all i > 0.

[Properties of the sheafification functor and standard results from Commutative Algebra should be assumed in this question.]

$\mathbf{4}$

Given an open cover \mathcal{U} of a topological space X, and a sheaf \mathcal{F} of abelian groups on X, describe the construction of the Čech cohomology groups $\check{H}^i(\mathcal{U}, \mathcal{F})$. If X is an algebraic variety and \mathcal{F} is a quasi-coherent sheaf on X, state (without proof) a criterion on \mathcal{U} which ensures that $\check{H}^i(\mathcal{U}, \mathcal{F})$ is isomorphic to the cohomology group $H^i(X, \mathcal{F})$ (constructed for instance via flabby resolutions) for all $i \ge 0$. For \mathcal{F} any quasi-coherent sheaf on \mathbf{P}^n , deduce that $H^i(\mathbf{P}^n, \mathcal{F}) = 0$ for all i > n.

Describe the construction of the invertible sheaves $\mathcal{O}_{\mathbf{P}^n}(m)$ on \mathbf{P}^n (where $m \in \mathbf{Z}$). Prove that $H^0(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(m))$ is isomorphic to the space of homogeneous polynomials of degree m in $k[X_0, \ldots, X_n]$ when $m \ge 0$, and is zero for m < 0.

For integers $d_0, d_1, \ldots, d_n \ge 0$, show that the homogeneous ideal $\langle X_0^{d_0}, X_1^{d_1}, \ldots, X_n^{d_n} \rangle$ of $k[X_0, \ldots, X_n]$ contains all homogeneous polynomials of degree $d = \sum_{i=0}^n d_i$. Using Čech cohomology, deduce that $H^n(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}) = 0$ for all n > 0.

Assuming standard general properties of cohomology and arguing by induction on n, prove (when n > 0) that

$$H^n(\mathbf{P}^n, \mathcal{O}_{\mathbf{P}^n}(-r)) = 0$$

for all $r \leq n$.

Assuming that $\omega_0 = dx_1 \wedge \ldots \wedge dx_n$ is a generator for the regular *n*-forms on \mathbf{A}^n , show that the sheaf $\Omega_{\mathbf{P}^n}^n$ of regular *n*-forms on \mathbf{P}^n is isomorphic to $\mathcal{O}_{\mathbf{P}^n}(-n-1)$. Say briefly why the above calculations are consistent with the statement of Serre duality on \mathbf{P}^n .

4

END OF PAPER