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1

For F a presheaf of abelian groups on a topological space X, describe the construc-
tion of the sheafification F+ and the corresponding morphism of presheaves θ : F → F+.
State the universal property satisfied by this morphism, and in the case when F is itself
a sheaf show that θ is an isomorphism.

Suppose now that f : X → Y is a continuous map of topological spaces, that F is
a sheaf of abelian groups on X and G a sheaf of abelian groups on Y . Describe briefly the
construction of the sheaves f∗F on Y and f−1G on X.

An f -morphism φ : G → F is defined by giving homomorphisms of abelian
groups φ(U) : G(U) → F(f−1U) for all U open in Y which are compatible with
restrictions, namely for V ⊂ U an inclusion of open sets and σ ∈ G(U), we have
φ(V )(σ|V ) = (φ(U)(σ))|f−1V . Show that such an f -morphism φ induces homomorphisms
on stalks φf(P ) : Gf(P ) → FP for all P ∈ X.

Show that there is a natural f -morphism θ : G → f−1G with the property that any
f -morphism φ : G → F determines a unique morphism ψ : f−1G → F of sheaves on X

with φ(U) = ψ(f−1U) ◦ θ(U) for all U open in Y .
[Hint: To define the image of a section s ∈ (f−1G)(V ), you may need to glue together

certain sections of F over some open cover of V .]

Deduce that there is a natural bijection between HomX(f−1G,F) (morphisms of
sheaves on X) and HomY (G, f∗F).

2

For an affine variety V over an algebraically closed field k, describe briefly (without
proofs) one of the two possible constructions for the sheaf of regular functions OV . Define
briefly what is meant by an algebraic variety X over an algebraically closed field k (you
need not define the Zariski topology on X×X) and by a morphism of such varieties. Show
that affine varieties are algebraic varieties, and that regular maps between affine varieties
give rise to morphisms of varieties in the sense just defined.

Let φ : X → Y be a morphism of varieties, and suppose that Y can be covered by
open sets Ui such that the induced morphism φ−1(Ui) → Ui is an isomorphism of varieties
for each i; show that φ is an isomorphism.

From now on, we suppose that X is a variety over an algebraically closed field k,
and A denotes the k-algebra Γ(X,OX).

For Y an affine variety over k with B = Γ(Y,OY ), show that any k-algebra
homomorphism from B to A induces a morphism of varieties from X to Y .

Now suppose that f ∈ A and Xf := {x ∈ X : f(x) 6= 0}; show that
Γ(Xf ,OX) = Af . Suppose that there is a finite set f1, . . . , fr of elements of A which
generate the unit ideal, and that Xfi is affine for all i; prove that X is itself affine.
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3

For (X,OX ) a variety, define what it means for an OX -module F to be quasi-

coherent. Let X be an affine variety with coordinate ring A and basic open sets
D(f) = {x ∈ X : f(x) 6= 0} for f ∈ A. For each A-module M , recall that an OX -
module M̃ on X may be defined with the property that M̃(D(f)) ∼= Mf for all f ∈ A,
with stalks given by the localizations of M at the maximal ideals of A. Prove that an
OX -module on the affine variety X is quasi-coherent if and only if it is of the form M̃ for
some A-module M . Deduce that taking global sections of quasi-coherent sheaves on an
affine variety is an exact functor.

For U an open subset of a topological space X and F a sheaf of abelian groups
on X, define the sheaf UF on X and the morphism F → UF . With cohomology groups
constructed via flabby resolutions, suppose B is a basis of open sets in X, closed under
finite intersections, with Hj(V,F|V ) = 0 for 0 < j < i and for all V ∈ B; state (without
proof) the locally vanishing principle for elements of H i(X,F). If F a quasi-coherent
OX -module on an affine variety X, prove that H i(X,F) = 0 for all i > 0.

[Properties of the sheafification functor and standard results from Commutative
Algebra should be assumed in this question.]

4

Given an open cover U of a topological space X, and a sheaf F of abelian groups on
X, describe the construction of the Čech cohomology groups Ȟ i(U ,F). IfX is an algebraic
variety and F is a quasi-coherent sheaf on X, state (without proof) a criterion on U which
ensures that Ȟ i(U ,F) is isomorphic to the cohomology group H i(X,F) (constructed for
instance via flabby resolutions) for all i > 0. For F any quasi-coherent sheaf on Pn, deduce
that H i(Pn,F) = 0 for all i > n.

Describe the construction of the invertible sheaves OPn(m) on Pn (where m ∈ Z).
Prove that H0(Pn,OPn(m)) is isomorphic to the space of homogeneous polynomials of
degree m in k[X0, . . . ,Xn] when m > 0, and is zero for m < 0.

For integers d0, d1, . . . , dn > 0, show that the homogeneous ideal 〈Xd0
0 ,Xd1

1 , . . . ,Xdn
n 〉

of k[X0, . . . ,Xn] contains all homogeneous polynomials of degree d =
∑n

i=0 di. Using Čech
cohomology, deduce that Hn(Pn,OPn) = 0 for all n > 0.

Assuming standard general properties of cohomology and arguing by induction on
n, prove (when n > 0) that

Hn(Pn,OPn(−r)) = 0

for all r 6 n.

Assuming that ω0 = dx1 ∧ . . . ∧ dxn is a generator for the regular n-forms on An,
show that the sheaf Ωn

Pn of regular n-forms on Pn is isomorphic to OPn(−n − 1). Say
briefly why the above calculations are consistent with the statement of Serre duality on
Pn.
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